This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204462 #11 Dec 07 2020 02:07:48 %S A204462 1,6,318,32134,4083008,587267282,91403537276,15027205920330, %T A204462 2572042542065646,454018964549333284,82122490665668040962, %U A204462 15150820045467016057500,2841258381788564812646472,540201085284535788002286246,103917818379993516623446237348 %N A204462 Number of 2*n-element subsets that can be chosen from {1,2,...,12*n} having element sum n*(12*n+1). %C A204462 a(n) is the number of partitions of n*(12*n+1) into 2*n distinct parts <=12*n. %e A204462 a(1) = 6 because there are 6 2-element subsets that can be chosen from {1,2,...,12} having element sum 13: {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7}. %p A204462 b:= proc(n, i, t) option remember; %p A204462 `if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0, %p A204462 `if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1)))) %p A204462 end: %p A204462 a:= n-> b(n*(12*n+1), 12*n, 2*n): %p A204462 seq(a(n), n=0..12); %t A204462 b[n_, i_, t_] /; i<t || n<t(t+1)/2 || n>t(2i-t+1)/2 = 0; b[0, _, _] = 1; %t A204462 b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]; %t A204462 a[n_] := b[n(12n+1), 12n, 2n]; %t A204462 a /@ Range[0, 10] (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *) %Y A204462 Bisection of row n=6 of A204459. %K A204462 nonn %O A204462 0,2 %A A204462 _Alois P. Heinz_, Jan 18 2012