This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204465 #11 Dec 07 2020 02:08:12 %S A204465 1,1,9,85,1143,17053,276373,4721127,83916031,1537408202,28851490163, %T A204465 552095787772,10736758952835,211657839534446,4221164530621965, %U A204465 85031286025167082,1727896040082882283,35382865902724442331,729502230296220422918,15132164184348997874504 %N A204465 Number of n-element subsets that can be chosen from {1,2,...,9*n} having element sum n*(9*n+1)/2. %C A204465 a(n) is the number of partitions of n*(9*n+1)/2 into n distinct parts <=9*n. %e A204465 a(2) = 9 because there are 9 2-element subsets that can be chosen from {1,2,...,18} having element sum 19: {1,18}, {2,17}, {3,16}, {4,15}, {5,14}, {6,13}, {7,12}, {8,11}, {9,10}. %p A204465 b:= proc(n, i, t) option remember; %p A204465 `if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0, %p A204465 `if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1)))) %p A204465 end: %p A204465 a:= n-> b(n*(9*n+1)/2, 9*n, n): %p A204465 seq(a(n), n=0..20); %t A204465 b[n_, i_, t_] /; i<t || n<t(t+1)/2 || n>t(2i-t+1)/2 = 0; b[0, _, _] = 1; %t A204465 b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]; %t A204465 a[n_] := b[n(9n+1)/2, 9n, n]; %t A204465 a /@ Range[0, 10] (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *) %Y A204465 Row n=9 of A204459. %K A204465 nonn %O A204465 0,3 %A A204465 _Alois P. Heinz_, Jan 18 2012