This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204514 #22 Nov 23 2022 19:41:34 %S A204514 0,1,2,3,6,17,34,99,198,577,1154,3363,6726,19601,39202,114243,228486, %T A204514 665857,1331714,3880899,7761798,22619537,45239074,131836323,263672646, %U A204514 768398401,1536796802,4478554083,8957108166,26102926097,52205852194,152139002499,304278004998,886731088897 %N A204514 Numbers such that floor(a(n)^2 / 8) is again a square. %C A204514 Or: Numbers whose square, with its last base-8 digit dropped, is again a square. (Except maybe for the 3 initial terms whose square has only 1 digit in base 8.) %C A204514 See A204504 for the squares resulting from truncation of a(n)^2, and A204512 for their square roots. - _M. F. Hasler_, Sep 28 2014 %H A204514 M. F. Hasler, <a href="/wiki/M. F. Hasler/Truncated_squares">Truncated squares</a>, OEIS wiki, Jan 16 2012 %H A204514 <a href="/index/Sq#sqtrunc">Index to sequences related to truncating digits of squares</a>. %H A204514 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,0,-1). %F A204514 G.f. = (x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(1 - 6*x^2 + x^4). %F A204514 a(n) = sqrt(A055872(n)). - _M. F. Hasler_, Sep 28 2014 %F A204514 a(2n) = A001541(n-1). a(2n+1) = A003499(n-1). - _R. J. Mathar_, Feb 05 2020 %p A204514 A204514 := proc(n) coeftayl((x^2+2*x^3-3*x^4-6*x^5)/(1-6*x^2+x^4), x=0, n); end proc: seq(A204514(n), n=1..30); # _Wesley Ivan Hurt_, Sep 28 2014 %t A204514 CoefficientList[Series[(x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(x (1 - 6*x^2 + x^4)), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 28 2014 *) %t A204514 LinearRecurrence[{0,6,0,-1},{0,1,2,3,6},40] (* _Harvey P. Dale_, Nov 23 2022 *) %o A204514 (PARI) b=8;for(n=0,1e7,issquare(n^2\b) & print1(n",")) %o A204514 (PARI) A204514(n)=polcoeff((x + 2*x^2 - 3*x^3 - 6*x^4)/(1 - 6*x^2 + x^4+O(x^(n+!n))),n-1,x) %Y A204514 Cf. A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2). %Y A204514 Cf. A003499, A055872, A204504, A204512. %K A204514 nonn,easy %O A204514 1,3 %A A204514 _M. F. Hasler_, Jan 15 2012