cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204517 Square root of floor[A055859(n)/7].

This page as a plain text file.
%I A204517 #11 Sep 28 2014 12:35:30
%S A204517 0,0,0,1,3,6,17,48,96,271,765,1530,4319,12192,24384,68833,194307,
%T A204517 388614,1097009,3096720,6193440,17483311,49353213,98706426,278635967,
%U A204517 786554688,1573109376,4440692161,12535521795,25071043590,70772438609,199781794032,399563588064
%N A204517 Square root of floor[A055859(n)/7].
%H A204517 M. F. Hasler, <a href="/wiki/M. F. Hasler/Truncated_squares">Truncated squares</a>, OEIS wiki, Jan 16 2012
%H A204517 <a href="/index/Sq#sqtrunc">Index to sequences related to truncating digits of squares</a>.
%F A204517 A204517(n) = sqrt(floor(A204516(n)^2/7)).
%F A204517 G.f. = (x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6)
%o A204517 (PARI) b=7;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))
%o A204517 (PARI) A204517(n)=polcoeff((x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6+O(x^n)),n)
%Y A204517 See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
%K A204517 nonn
%O A204517 1,5
%A A204517 _M. F. Hasler_, Jan 15 2012