This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204556 #25 Sep 08 2022 08:46:01 %S A204556 1,2,9,24,45,90,133,224,297,450,561,792,949,1274,1485,1920,2193,2754, %T A204556 3097,3800,4221,5082,5589,6624,7225,8450,9153,10584,11397,13050,13981, %U A204556 15872,16929,19074,20265,22680,24013,26714,28197,31200,32841,36162,37969,41624 %N A204556 Left edge of the triangle A045975. %H A204556 G. C. Greubel, <a href="/A204556/b204556.txt">Table of n, a(n) for n = 1..5000</a> %H A204556 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1). %F A204556 a(n) = A045975(n,1); %F A204556 a(n) = A031940(n-1) * n for n > 1; %F A204556 a(n) = A204557(n) - A045895(n). %F A204556 G.f.: x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5) / ((1+x)^3*(x-1)^4). - _R. J. Mathar_, Aug 13 2012 %F A204556 From _Colin Barker_, Jan 28 2016: (Start) %F A204556 a(n) = n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4. %F A204556 a(n) = (n^3-n^2)/2 for n even. %F A204556 a(n) = (n^3-2*n^2+3*n)/2 for n odd. %F A204556 (End) %t A204556 Table[n*(2*n^2 - 3*n + (-1)^n*(n - 3) + 3)/4, {n, 1, 50}] (* _G. C. Greubel_, Jun 15 2018 *) %o A204556 (Haskell) %o A204556 a204556 = head . a045975_row %o A204556 (PARI) Vec(x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5)/((1+x)^3*(x-1)^4) + O(x^99)) \\ _Charles R Greathouse IV_, Jun 12 2015 %o A204556 (PARI) for(n=1, 50, print1(n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4, ", ")) \\ _G. C. Greubel_, Jun 15 2018 %o A204556 (Magma) [n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4: n in [1..50]]; // _G. C. Greubel_, Jun 15 2018 %K A204556 nonn,easy %O A204556 1,2 %A A204556 _Reinhard Zumkeller_, Jan 18 2012