This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204557 #23 Sep 08 2022 08:46:01 %S A204557 1,4,21,36,85,120,217,280,441,540,781,924,1261,1456,1905,2160,2737, %T A204557 3060,3781,4180,5061,5544,6601,7176,8425,9100,10557,11340,13021,13920, %U A204557 15841,16864,19041,20196,22645,23940,26677,28120,31161,32760,36121,37884,41581 %N A204557 Right edge of the triangle A045975. %H A204557 Colin Barker, <a href="/A204557/b204557.txt">Table of n, a(n) for n = 1..1000</a> %H A204557 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1). %F A204557 a(n) = A045975(n,n); %F A204557 a(n) = A079326(n+1) * n; %F A204557 a(n) = A204556(n) + A045895(n). %F A204557 G.f.: -x*(-1-3*x-14*x^2-6*x^3-x^4+x^5) / ((1+x)^3*(x-1)^4). - _R. J. Mathar_, Aug 13 2012 %F A204557 From _Colin Barker_, Jan 28 2016: (Start) %F A204557 a(n) = n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4. %F A204557 a(n) = (n^3+n^2-2*n)/2 for n even. %F A204557 a(n) = (n^3+2*n^2-n)/2 for n odd. %F A204557 (End) %t A204557 Table[n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4, {n, 1, 50}] (* _G. C. Greubel_, Jun 15 2018 *) %t A204557 LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,4,21,36,85,120,217},50] (* _Harvey P. Dale_, Feb 20 2021 *) %o A204557 (Haskell) %o A204557 a204557 = last . a045975_row %o A204557 (PARI) Vec(-x*(-1-3*x-14*x^2-6*x^3-x^4+x^5)/((1+x)^3*(x-1)^4) + O(x^100)) \\ _Colin Barker_, Jan 28 2016 %o A204557 (Magma) [n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4: n in [1..50]]; // _G. C. Greubel_, Jun 15 2018 %K A204557 nonn,easy %O A204557 1,2 %A A204557 _Reinhard Zumkeller_, Jan 18 2012