cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204573 A204519(n)^2 = floor(A055851(n)/6): Squares which written in base 6, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 121, 400, 1600, 11881, 39204, 156816, 1164241, 3841600, 15366400, 114083761, 376437604, 1505750416, 11179044361, 36887043600, 147548174400, 1095432263641, 3614553835204, 14458215340816, 107341182792481, 354189388806400, 1416757555225600
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-6 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=6;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 99*a(n-3)-99*a(n-6)+a(n-9) for n>10. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^6+16*x^5+4*x^4+22*x^3+16*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-98*x^3+1)). - Colin Barker, Sep 20 2014