cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A204577 Sqrt(floor[A204575(n)/2]), written in binary.

Original entry on oeis.org

0, 0, 10, 1100, 1000110, 110011000, 100101001010, 11011000100100, 10011101110001110, 1110010111100110000, 1010011101111110010010, 111101000000111000111100, 101100011100111010111010110
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204576 Floor[A055792(n-1)/2]=A084703(n-2) (truncated squares), written in binary.

Original entry on oeis.org

0, 0, 100, 10010000, 1001100100100, 101000101001000000, 10101100100100101100100, 1011011100110011010100010000, 110000100111101101100001011000100, 11001110011101010100101010100100000000, 1101101100101100000000000111010111101000100
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

A204575 with the last (binary) digit (necessarily = 1, except for a(1)=0) deleted.
Also: Squares, written in binary, such that appending a (binary) digit (necessarily = 1) yields another square (except for a(1)=0 which corresponds to A204575(1)=00, the only square which remains square when multiplied by 2).

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
Showing 1-2 of 2 results.