This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204592 #14 Apr 05 2017 17:40:02 %S A204592 19441,266401,423481,539401,600601,663601,908041,1113961,1338241, %T A204592 1483561,1657441,1673401,2578801,3109681,3150841,3336601,3613681, %U A204592 4112761,4160641,4798081,5114881,5412961,5516281,5590201,5839681,6078361,7660801,8628481,9362641,9388801,9584401,9733081 %N A204592 Primes p such that (p+1)/2, (p+2)/3, (p+3)/4 and (p+4)/5 are also prime. %C A204592 Equivalently, primes p in A163573 such that p+4 is a semiprime. (Since all p in A163573 are of the form p=120k+1, p+4 is necessarily a multiple of 5. The other prime factor is then (p+4)/5 = 24k+1.) %H A204592 Charles R Greathouse IV, <a href="/A204592/b204592.txt">Table of n, a(n) for n = 1..10000</a> %F A204592 A204592 = A163573 intersect A136061. %t A204592 Select[Prime[Range[700000]],AllTrue[{(#+1)/2,(#+2)/3,(#+3)/4,(#+4)/5},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Apr 05 2017 *) %o A204592 (PARI) {my(p=1); until(, isprime(p+=120) || next; for( j=2,5, isprime(p\j+1) || next(2)); print1(p","))} %o A204592 (PARI) forprime(p=2,1e7,if(p%120==1&&isprime((p+1)/2)&&isprime((p+2)/3)&& isprime((p+3)/4)&&isprime((p+4)/5),print1(p", "))) \\ _Charles R Greathouse IV_, Feb 26 2012 %K A204592 nonn %O A204592 1,1 %A A204592 _M. F. Hasler_, Feb 26 2012