cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204594 Nearest integer to n*log(n) + n*log(log(n)) - n + n/log(n)*(log(log(n))-2) - n*log(log(n))*(log(log(n))-6)/(2 log(n)^2), an asymptotic expression for prime(n).

This page as a plain text file.
%I A204594 #8 Aug 03 2014 14:37:26
%S A204594 -13,-4,0,3,6,10,13,17,20,24,28,32,36,40,44,49,53,57,62,66,71,76,80,
%T A204594 85,90,95,100,105,109,115,120,125,130,135,140,145,151,156,161,167,172,
%U A204594 177,183,188,194,199,205,210,216,222,227,233,239,244,250,256,262
%N A204594 Nearest integer to n*log(n) + n*log(log(n)) - n + n/log(n)*(log(log(n))-2) - n*log(log(n))*(log(log(n))-6)/(2 log(n)^2), an asymptotic expression for prime(n).
%H A204594 Pierre Dusart, <a href="http://arxiv.org/abs/1002.0442">Estimates of Some Functions Over Primes without R.H.</a> (2010).
%H A204594 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_number_theorem">Prime number theorem</a>
%t A204594 Table[Round[n Log[n] + n Log[Log[n]] - n + n/Log[n](Log[Log[n]] - 2) - n Log[Log[n]](Log[Log[n]] - 6)/(2 Log[n]^2)], {n, 2, 58}] (* _Alonso del Arte_, Feb 07 2012 *)
%o A204594 (PARI) A204594(n)=round(n*log(n)+n*log(log(n))-n+n/log(n)*(log(log(n))-2)-n*log(log(n))/2/log(n)^2*(log(log(n))-6))
%Y A204594 Cf. A059112, A059111, A064658, A064659.
%K A204594 sign
%O A204594 2,1
%A A204594 _M. F. Hasler_, Feb 07 2012