A204624 Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having unequal diagonal elements or unequal antidiagonal elements, and new values 0..2 introduced in row major order.
96, 2049, 43734, 933462, 19923888, 425257068, 9076721064, 193734264456, 4135079723136, 88259474206608, 1883817316421472, 40208348322379872, 858210220662456576, 18317707978060726464, 390974632428061590144
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....0..0..1....0..0..1....0..1..2....0..0..1....0..0..1....0..1..0 ..0..1..1....2..0..2....2..0..2....1..2..2....2..0..0....2..0..2....2..1..2 ..1..2..0....0..0..2....2..2..1....0..2..1....2..0..1....1..0..2....2..1..1 ..1..2..1....2..0..2....0..2..1....1..1..0....2..2..2....1..2..1....0..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204630.
Formula
Empirical: a(n) = 22*a(n-1) -14*a(n-2).
Conjectures from Colin Barker, Jun 07 2018: (Start)
G.f.: 3*x*(32 - 21*x) / (1 - 22*x + 14*x^2).
a(n) = (3*(11+sqrt(107))^n*(31+3*sqrt(107)) + (11-sqrt(107))^n*(-93+9*sqrt(107))) / (4*sqrt(107)).
(End)
Comments