A204625 Number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having unequal diagonal elements or unequal antidiagonal elements, and new values 0..2 introduced in row major order.
768, 43734, 2490558, 141832254, 8077061502, 459972403614, 26194503047262, 1491724252385406, 84950695233299262, 4837771196037723486, 275501337345598245918, 15689246928705157494846, 893471050128160321852158
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..2..1....0..0..0..0....0..1..0..2....0..0..0..0....0..0..0..1 ..2..2..0..0....1..0..1..0....1..2..2..1....1..0..1..0....2..0..1..1 ..0..2..2..0....2..1..1..0....1..0..1..1....2..2..1..2....0..0..1..2 ..0..1..0..1....2..0..0..0....0..0..2..0....0..0..2..0....2..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204630.
Formula
Empirical: a(n) = 60*a(n-1) - 175*a(n-2) + 68*a(n-3).
Empirical g.f.: 6*x*(128 - 391*x + 153*x^2) / (1 - 60*x + 175*x^2 - 68*x^3). - Colin Barker, Jun 07 2018
Comments