A204646 Number of (n+1) X 4 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.
28, 56, 104, 178, 284, 434, 637, 908, 1259, 1708, 2270, 2966, 3814, 4838, 6059, 7504, 9197, 11168, 13444, 16058, 19040, 22426, 26249, 30548, 35359, 40724, 46682, 53278, 60554, 68558, 77335, 86936, 97409, 108808, 121184, 134594, 149092, 164738, 181589
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0 ..1..1..1..1....0..0..0..1....0..0..1..1....0..0..0..1....0..0..0..0 ..1..1..1..1....0..0..0..1....1..1..1..1....0..0..0..1....0..0..0..0 ..1..1..1..1....0..0..1..1....1..1..1..1....0..0..0..1....0..0..0..1 ..1..1..1..1....0..1..1..1....1..1..1..1....0..0..1..1....0..0..0..1 ..1..1..1..1....1..1..1..1....1..1..1..1....0..0..1..1....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204651.
Formula
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>7.
Conjectures from Colin Barker, Jun 08 2018: (Start)
G.f.: x*(28 - 56*x + 20*x^2 + 42*x^3 - 48*x^4 + 20*x^5 - 3*x^6) / ((1 - x)^5*(1 + x)).
a(n) = (256 + 400*n + 144*n^2 + 16*n^3 + 2*n^4)/32 for n>1 and even.
a(n) = (238 + 400*n + 144*n^2 + 16*n^3 + 2*n^4)/32 for n>1 and odd.
(End)
Comments