A204650 Number of (n+1) X 8 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.
216, 283, 637, 1478, 3261, 6780, 13314, 24862, 44426, 76378, 126906, 204583, 321038, 491781, 737163, 1083525, 1564519, 2222657, 3111073, 4295556, 5856841, 7893218, 10523448, 13890048, 18162936, 23543500, 30269084, 38617957, 48914760, 61536499
Offset: 1
Keywords
Examples
Some solutions for n=5: 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204651.
Formula
Empirical: a(n) = 8*a(n-1) - 27*a(n-2) + 48*a(n-3) - 42*a(n-4) + 42*a(n-6) - 48*a(n-7) + 27*a(n-8) - 8*a(n-9) + a(n-10) for n > 15.
Empirical g.f.: x*(216 - 1445*x + 4205*x^2 - 6345*x^3 + 4124*x^4 + 1908*x^5 - 6141*x^6 + 5440*x^7 - 2472*x^8 + 519*x^9 + 27*x^10 - 28*x^11 - 24*x^12 + 24*x^13 - 6*x^14) / ((1 - x)^9*(1 + x)). - Colin Barker, Jun 08 2018
Comments