cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A204644 Number of (n+1) X 2 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

8, 16, 28, 48, 80, 132, 216, 352, 572, 928, 1504, 2436, 3944, 6384, 10332, 16720, 27056, 43780, 70840, 114624, 185468, 300096, 485568, 785668, 1271240, 2056912, 3328156, 5385072, 8713232, 14098308, 22811544, 36909856, 59721404, 96631264, 156352672, 252983940
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2012

Keywords

Examples

			Some solutions for n=5:
  0 1   0 1   0 0   0 0   0 1   0 0   1 0   0 0   0 0   0 0
  0 1   0 1   0 0   0 0   1 0   0 1   0 1   0 0   0 0   1 1
  1 0   0 1   0 0   0 0   0 1   0 1   1 0   0 1   0 0   1 1
  0 1   0 1   0 1   0 0   1 1   0 1   0 1   0 1   0 1   1 1
  0 1   1 0   1 0   0 0   1 1   0 1   1 0   0 1   1 1   1 1
  1 1   0 1   0 1   0 1   1 1   0 1   0 1   1 1   1 1   1 1
		

Crossrefs

Column 1 of A204651.

Formula

Empirical: a(n) = 2*a(n-1) - a(n-3).
From the empirical recurrence, a(n) = 4*(Fibonacci(n + 3) - 1). - Ehren Metcalfe, Apr 04 2019

A204643 Number of (n+1)X(n+1) 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

8, 32, 104, 330, 1076, 3702, 13314, 49312, 185786, 706912, 2706218, 10403402, 40120324, 155122378, 601086622, 2333614100, 9075145134, 35345275932, 137846543630, 538257892350, 2104098985192, 8233430753142, 32247603713264
Offset: 1

Views

Author

R. H. Hardin Jan 17 2012

Keywords

Comments

Diagonal of A204651

Examples

			Some solutions for n=5
..0..0..0..0..0..1....0..0..0..0..1..1....0..0..0..0..0..1....0..0..0..0..0..0
..0..0..1..1..1..1....0..0..0..0..1..1....0..0..0..0..1..1....0..0..0..0..0..0
..0..0..1..1..1..1....0..0..0..1..1..1....0..0..0..0..1..1....0..0..0..0..1..1
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..0..0..1..1....0..0..0..0..1..1
..1..1..1..1..1..1....0..1..1..1..1..1....0..0..0..1..1..1....0..1..1..1..1..1
..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1
		

A204645 Number of (n+1) X 3 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

16, 32, 56, 90, 137, 200, 283, 390, 526, 696, 906, 1162, 1471, 1840, 2277, 2790, 3388, 4080, 4876, 5786, 6821, 7992, 9311, 10790, 12442, 14280, 16318, 18570, 21051, 23776, 26761, 30022, 33576, 37440, 41632, 46170, 51073, 56360, 62051, 68166, 74726, 81752
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2012

Keywords

Comments

Column 2 of A204651.

Examples

			Some solutions for n=5:
..0..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..1....0..1..1
..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..1..1....0..1..1
..0..0..0....0..0..1....0..1..1....0..0..1....0..0..0....0..1..1....0..1..1
..0..0..0....0..1..1....0..1..1....0..0..1....0..1..1....0..1..1....0..1..1
..0..0..1....0..1..1....0..1..1....0..0..1....1..1..1....1..1..1....0..1..1
..1..1..1....1..1..1....1..1..1....0..0..1....1..1..1....1..1..1....1..1..1
		

Crossrefs

Cf. A204651.

Formula

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
Conjectures from Colin Barker, Jun 08 2018: (Start)
G.f.: x*(16 - 32*x + 8*x^2 + 26*x^3 - 23*x^4 + 6*x^5) / ((1 - x)^5*(1 + x)).
a(n) = (576 + 704*n + 232*n^2 + 16*n^3 + 2*n^4)/96 for n even.
a(n) = (582 + 704*n + 232*n^2 + 16*n^3 + 2*n^4)/96 for n odd.
(End)

A204646 Number of (n+1) X 4 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

28, 56, 104, 178, 284, 434, 637, 908, 1259, 1708, 2270, 2966, 3814, 4838, 6059, 7504, 9197, 11168, 13444, 16058, 19040, 22426, 26249, 30548, 35359, 40724, 46682, 53278, 60554, 68558, 77335, 86936, 97409, 108808, 121184, 134594, 149092, 164738, 181589
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2012

Keywords

Comments

Column 3 of A204651.

Examples

			Some solutions for n=5:
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0
..1..1..1..1....0..0..0..1....0..0..1..1....0..0..0..1....0..0..0..0
..1..1..1..1....0..0..0..1....1..1..1..1....0..0..0..1....0..0..0..0
..1..1..1..1....0..0..1..1....1..1..1..1....0..0..0..1....0..0..0..1
..1..1..1..1....0..1..1..1....1..1..1..1....0..0..1..1....0..0..0..1
..1..1..1..1....1..1..1..1....1..1..1..1....0..0..1..1....1..1..1..1
		

Crossrefs

Cf. A204651.

Formula

Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>7.
Conjectures from Colin Barker, Jun 08 2018: (Start)
G.f.: x*(28 - 56*x + 20*x^2 + 42*x^3 - 48*x^4 + 20*x^5 - 3*x^6) / ((1 - x)^5*(1 + x)).
a(n) = (256 + 400*n + 144*n^2 + 16*n^3 + 2*n^4)/32 for n>1 and even.
a(n) = (238 + 400*n + 144*n^2 + 16*n^3 + 2*n^4)/32 for n>1 and odd.
(End)

A204647 Number of (n+1) X 5 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

48, 90, 178, 330, 571, 938, 1478, 2248, 3317, 4766, 6690, 9198, 12415, 16482, 21558, 27820, 35465, 44710, 55794, 68978, 84547, 102810, 124102, 148784, 177245, 209902, 247202, 289622, 337671, 391890, 452854, 521172, 597489, 682486, 776882, 881434
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2012

Keywords

Comments

Column 4 of A204651.

Examples

			Some solutions for n=5:
..0..0..0..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..1..1..1....0..0..0..0..0....0..0..0..1..1....0..0..0..0..0
..1..1..1..1..1....0..0..0..0..1....0..0..0..1..1....0..0..0..0..1
..1..1..1..1..1....0..0..0..0..1....0..1..1..1..1....0..0..0..1..1
..1..1..1..1..1....0..0..0..1..0....0..1..1..1..1....0..0..1..1..1
		

Crossrefs

Cf. A204651.

Formula

Empirical: a(n) = 5*a(n-1) -9*a(n-2) +5*a(n-3) +5*a(n-4) -9*a(n-5) +5*a(n-6) -a(n-7) for n>9.
Conjectures from Colin Barker, Jun 08 2018: (Start)
G.f.: x*(48 - 150*x + 160*x^2 + 10*x^3 - 167*x^4 + 145*x^5 - 43*x^6 - 5*x^7 + 4*x^8) / ((1 - x)^6*(1 + x)).
a(n) = (1920 + 9776*n + 3480*n^2 + 540*n^3 + 90*n^4 + 4*n^5)/480 for n>2 and even.
a(n) = (1950 + 9776*n + 3480*n^2 + 540*n^3 + 90*n^4 + 4*n^5)/480 for n>2 and odd.
(End)

A204648 Number of (n+1) X 6 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

80, 137, 284, 571, 1076, 1918, 3261, 5329, 8408, 12867, 19162, 27859, 39640, 55328, 75895, 102489, 136444, 179309, 232860, 299131, 380428, 479362, 598865, 742225, 913104, 1115575, 1354142, 1633779, 1959952, 2338660, 2776459, 3280505, 3858580
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2012

Keywords

Comments

Column 5 of A204651.

Examples

			Some solutions for n=5:
..1..0..1..0..1..0....0..0..0..0..0..1....0..0..0..0..0..0....0..1..1..1..1..1
..0..1..0..1..0..1....0..0..0..0..0..1....0..0..0..0..1..1....1..1..1..1..1..1
..1..0..1..0..1..1....0..0..0..0..1..1....0..0..1..1..1..1....1..1..1..1..1..1
..0..1..0..1..1..1....0..0..0..0..1..1....0..0..1..1..1..1....1..1..1..1..1..1
..1..0..1..1..1..1....0..0..0..1..1..1....0..0..1..1..1..1....1..1..1..1..1..1
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..1..1..1..1....1..1..1..1..1..1
		

Crossrefs

Cf. A204651.

Formula

Empirical: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8) for n>11.
Conjectures from Colin Barker, Jun 08 2018: (Start)
G.f.: x*(80 - 343*x + 582*x^2 - 335*x^3 - 292*x^4 + 600*x^5 - 379*x^6 + 89*x^7 - 4*x^8 + 8*x^9 - 4*x^10) / ((1 - x)^7*(1 + x)).
a(n) = (-10080 + 43776*n + 15308*n^2 + 2970*n^3 + 620*n^4 + 54*n^5 + 2*n^6)/1440 for n>3 and even.
a(n) = (-10890 + 43776*n + 15308*n^2 + 2970*n^3 + 620*n^4 + 54*n^5 + 2*n^6)/1440 for n>3 and odd.
(End)

A204649 Number of (n+1) X 7 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

132, 200, 434, 938, 1918, 3702, 6780, 11868, 19969, 32450, 51134, 78404, 117324, 171774, 246604, 347804, 482695, 660138, 890766, 1187236, 1564506, 2040134, 2634604, 3371676, 4278765, 5387346, 6733390, 8357828, 10307048, 12633422
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2012

Keywords

Comments

Column 6 of A204651.

Examples

			Some solutions for n=5:
..0..0..0..1..1..1..1....0..0..0..0..0..0..1....0..0..0..0..0..0..0
..0..0..1..1..1..1..1....0..0..0..0..0..0..1....0..0..0..0..0..1..1
..0..0..1..1..1..1..1....0..0..0..0..0..0..1....0..0..1..1..1..1..1
..0..0..1..1..1..1..1....0..0..0..0..1..1..1....0..0..1..1..1..1..1
..0..0..1..1..1..1..1....0..0..0..1..1..1..1....0..1..1..1..1..1..1
..0..1..1..1..1..1..1....1..1..1..1..1..1..1....1..1..1..1..1..1..1
		

Crossrefs

Cf. A204651.

Formula

Empirical: a(n) = 7*a(n-1) -20*a(n-2) +28*a(n-3) -14*a(n-4) -14*a(n-5) +28*a(n-6) -20*a(n-7) +7*a(n-8) -a(n-9) for n>13.
Empirical g.f.: x*(132 - 724*x + 1674*x^2 - 1796*x^3 + 280*x^4 + 1532*x^5 - 1858*x^6 + 992*x^7 - 255*x^8 + 15*x^9 + 26*x^10 - 22*x^11 + 6*x^12) / ((1 - x)^8*(1 + x)). - Colin Barker, Jun 08 2018

A204650 Number of (n+1) X 8 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.

Original entry on oeis.org

216, 283, 637, 1478, 3261, 6780, 13314, 24862, 44426, 76378, 126906, 204583, 321038, 491781, 737163, 1083525, 1564519, 2222657, 3111073, 4295556, 5856841, 7893218, 10523448, 13890048, 18162936, 23543500, 30269084, 38617957, 48914760, 61536499
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2012

Keywords

Comments

Column 7 of A204651.

Examples

			Some solutions for n=5:
  1 0 1 0 1 0 0 1       0 0 0 0 0 0 0 0       0 0 0 0 0 0 0 1
  0 1 0 1 0 1 1 1       0 0 0 0 0 0 0 1       0 0 0 0 0 0 0 1
  1 0 1 0 1 1 1 1       0 0 0 0 0 0 0 1       0 0 0 0 0 0 1 1
  0 1 0 1 1 1 1 1       0 0 0 1 1 1 1 1       0 0 0 0 0 1 1 1
  1 0 1 1 1 1 1 1       1 1 1 1 1 1 1 1       0 0 0 0 0 1 1 1
  0 1 1 1 1 1 1 1       1 1 1 1 1 1 1 1       1 1 1 1 1 1 1 1
		

Crossrefs

Cf. A204651.

Formula

Empirical: a(n) = 8*a(n-1) - 27*a(n-2) + 48*a(n-3) - 42*a(n-4) + 42*a(n-6) - 48*a(n-7) + 27*a(n-8) - 8*a(n-9) + a(n-10) for n > 15.
Empirical g.f.: x*(216 - 1445*x + 4205*x^2 - 6345*x^3 + 4124*x^4 + 1908*x^5 - 6141*x^6 + 5440*x^7 - 2472*x^8 + 519*x^9 + 27*x^10 - 28*x^11 - 24*x^12 + 24*x^13 - 6*x^14) / ((1 - x)^9*(1 + x)). - Colin Barker, Jun 08 2018
Showing 1-8 of 8 results.