A204679 Number of n X 2 0..3 arrays with no occurrence of three equal elements in a row horizontally, vertically, diagonally or antidiagonally, and new values 0..3 introduced in row major order.
2, 15, 159, 2191, 31168, 447343, 6427791, 92387812, 1327953799, 19087798375, 274365294336, 3943689122935, 56686048473223, 814797524429284, 11711788424726319, 168343648648695295, 2419748633865949120
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..1....0..0....0..1....0..0....0..0....0..0....0..0....0..0....0..1....0..0 ..1..0....1..0....1..0....0..1....0..0....0..0....0..0....0..0....0..1....0..0 ..0..0....0..1....0..0....1..2....1..2....1..1....1..1....1..2....1..0....1..1 ..0..1....1..0....2..1....0..1....1..3....2..3....0..1....2..1....1..0....1..2 ..1..0....0..1....0..2....0..0....2..0....3..0....1..2....1..0....2..3....2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204685.
Formula
Empirical: a(n) = 14*a(n-1) +14*a(n-2) -124*a(n-3) -6*a(n-4) +90*a(n-5) -27*a(n-6) for n>8.
Empirical g.f.: x*(2 - 13*x - 79*x^2 + 3*x^3 + 140*x^4 - 57*x^5 - 21*x^6 + 9*x^7) / ((1 + x)*(1 + 3*x)*(1 - 3*x + x^2)*(1 - 15*x + 9*x^2)). - Colin Barker, Feb 23 2018
Comments