A204693 a(n) = n^n (mod 7).
1, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6, 0, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6, 0, 1, 4
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
Table[PowerMod[n,n,7], {n,0,100}]
-
PARI
a(n)=lift(Mod(n,7)^n) \\ Charles R Greathouse IV, Jan 23 2012
Formula
a(n) = a(n-42), n>42. - R. J. Mathar, Sep 25 2014
G.f.: ( -1 -4*x -2*x^37 -6*x^2 -4*x^22 -4*x^24 -4*x^25 -6*x^26 -x^28 -x^29 -3*x^30 -6*x^40 -2*x^31 -6*x^32 -x^33 -x^35 -x^17 -5*x^18 -x^19 -x^21 -x^23-x^38 -2*x^39 -2*x^36 -4*x^3 -3*x^4 -x^5 -x^7 -x^8 -4*x^9 -2*x^10 -x^11 -6*x^12 -x^14 -2*x^15 -5*x^16 ) / ( (x-1) *(1+x^6+x^5+x^4+x^3+x^2+x) *(1+x+x^2) *(1-x+x^3-x^4+x^6-x^8+x^9-x^11+x^12) *(1+x) *(1-x+x^2-x^3+x^4-x^5+x^6) *(1-x+x^2)*(1+x-x^3-x^4+x^6-x^8-x^9+x^11+x^12) ). - R. J. Mathar, Sep 25 2014
Comments