A204699 Number of n X 2 0..2 arrays with no occurrence of three equal elements in a row horizontally, vertically or nw-to-se diagonally, and new values 0..2 introduced in row major order.
2, 14, 96, 726, 5400, 40344, 301056, 2247264, 16773504, 125199744, 934502400, 6975223296, 52063770624, 388609284096, 2900619165696, 21650516238336, 161601653145600, 1206211160408064, 9003282670288896, 67201416721465344
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..0....0..0....0..1....0..1....0..1....0..1....0..0....0..1....0..0....0..1 ..0..1....0..1....1..1....2..0....2..0....0..2....0..1....0..2....1..2....0..0 ..2..0....2..1....0..2....0..1....1..2....2..0....2..0....1..1....0..2....2..0 ..1..2....2..2....2..2....2..2....2..0....0..2....1..0....1..2....1..0....0..2 ..0..2....0..0....1..0....2..1....0..1....1..0....0..2....2..1....2..1....0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204705.
Formula
Empirical: a(n) = 6*a(n-1) + 12*a(n-2) - 8*a(n-3) for n>5.
Empirical g.f.: 2*x*(1 - 2*x)*(1 + 3*x - x^3) / ((1 + 2*x)*(1 - 8*x + 4*x^2)). - Colin Barker, Feb 23 2018
Comments