A204707 Number of (n+1) X 3 0..1 arrays with the permanents of all 2 X 2 subblocks equal and nonzero.
13, 33, 81, 209, 529, 1361, 3473, 8913, 22801, 58449, 149649, 383441, 982033, 2515793, 6443921, 16507089, 42282769, 108311121, 277442193, 710686673, 1820455441, 4663202129, 11945023889, 30597832401, 78377927953, 200769257553
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1....0..1..0....1..1..1....0..1..1....1..1..0....0..1..1....0..1..1 ..1..1..1....1..1..1....0..1..0....1..0..1....0..1..1....1..1..0....1..0..1 ..1..0..1....1..0..1....1..1..1....1..1..0....1..0..1....0..1..1....1..1..1 ..1..1..1....0..1..0....1..0..1....0..1..1....1..1..0....1..1..0....1..0..1 ..1..0..1....1..1..1....0..1..1....1..1..0....0..1..1....1..0..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204713.
Formula
Empirical: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3).
Conjectures from Colin Barker, Jun 09 2018: (Start)
G.f.: x*(13 + 7*x - 24*x^2) / ((1 - x)*(1 - x - 4*x^2)).
a(n) = 1 + (2^(-1-n)*((1-sqrt(17))^n*(-19+5*sqrt(17)) + (1+sqrt(17))^n*(19+5*sqrt(17)))) / sqrt(17).
(End)
Comments