cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204708 Number of (n+1) X 4 0..1 arrays with the permanents of all 2 X 2 subblocks equal and nonzero.

Original entry on oeis.org

25, 81, 257, 833, 2689, 8705, 28161, 91137, 294913, 954369, 3088385, 9994241, 32342017, 104660993, 338690049, 1096024065, 3546808321, 11477712897, 37142659073, 120196169729, 388962975745, 1258710630401, 4073273163777
Offset: 1

Views

Author

R. H. Hardin, Jan 18 2012

Keywords

Comments

Column 3 of A204713.

Examples

			Some solutions for n=4:
..1..1..1..0....0..1..1..1....1..0..1..0....1..1..0..1....0..1..0..1
..1..0..1..1....1..1..0..1....1..1..0..1....1..0..1..1....1..1..1..0
..1..1..0..1....1..0..1..1....1..0..1..0....0..1..1..0....1..0..1..1
..0..1..1..0....0..1..1..0....1..1..1..1....1..1..0..1....0..1..1..0
..1..0..1..1....1..0..1..1....0..1..0..1....1..0..1..1....1..1..0..1
		

Crossrefs

Cf. A204713.

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) -4*a(n-3).
Conjectures from Colin Barker, Jun 09 2018: (Start)
G.f.: x*(25 + 6*x - 36*x^2) / ((1 - x)*(1 - 2*x - 4*x^2)).
a(n) = (5 + (20-8*sqrt(5))*(1-sqrt(5))^n + 4*(1+sqrt(5))^n*(5+2*sqrt(5))) / 5.
(End)