A204713 T(n,k) is the number of (n+1) X (k+1) 0..1 arrays with the permanents of all 2 X 2 subblocks equal and nonzero.
7, 13, 13, 25, 33, 25, 49, 81, 81, 49, 97, 209, 257, 209, 97, 193, 529, 833, 833, 529, 193, 385, 1361, 2689, 3473, 2689, 1361, 385, 769, 3473, 8705, 14145, 14145, 8705, 3473, 769, 1537, 8913, 28161, 58449, 73345, 58449, 28161, 8913, 1537, 3073, 22801, 91137
Offset: 1
Examples
Table starts 7 13 25 49 97 193 385 769 1537 13 33 81 209 529 1361 3473 8913 22801 25 81 257 833 2689 8705 28161 91137 294913 49 209 833 3473 14145 58449 239425 986129 4047681 97 529 2689 14145 73345 382849 1992321 10382977 54072961 193 1361 8705 58449 382849 2542369 16748161 110871041 731709057 385 3473 28161 239425 1992321 16748161 140090241 1174759297 9838208513 769 8913 91137 986129 10382977 110871041 1174759297 12503757969 132720731393 Some solutions for n=4 k=3 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..760
- Jon Maiga, Computer-generated formulas for A204713, Sequence Machine.
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3)
k=3: a(n) = 3*a(n-1) +2*a(n-2) -4*a(n-3)
k=4: a(n) = a(n-1) +13*a(n-2) +3*a(n-3) -16*a(n-4)
k=5: a(n) = 4*a(n-1) +15*a(n-2) -38*a(n-3) -52*a(n-4) +72*a(n-5)
k=6: (order 9 recurrence)
k=7: (order 10 recurrence)
Comments