This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204766 #48 Apr 17 2025 14:55:05 %S A204766 13,154,180,321,347,488,514,655,681,822,848,989,1015,1156,1182,1323, %T A204766 1349,1490,1516,1657,1683,1824,1850,1991,2017,2158,2184,2325,2351, %U A204766 2492,2518,2659,2685,2826,2852,2993,3019,3160 %N A204766 a(n) = 167*(n-1)-a(n-1) with n>1, a(1)=13. %C A204766 Positive numbers k such that k^2 == 2 (mod 167), where the prime 167 == -1 (mod 8). %C A204766 Equivalently, numbers k such that k == 13 or 154 (mod 167). %H A204766 Vincenzo Librandi, <a href="/A204766/b204766.txt">Table of n, a(n) for n = 1..1000</a> %H A204766 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A204766 G.f.: x*(13+141*x+13*x^2)/((1+x)*(x-1)^2). %F A204766 a(n) = (-167+115*(-1)^n+334*n)/4. %F A204766 a(n) = a(n-1)+a(n-2)-a(n-3). %F A204766 Sum_{n>=1} (-1)^(n+1)/a(n) = cot(13*Pi/167)*Pi/167. - _Amiram Eldar_, Feb 28 2023 %t A204766 CoefficientList[Series[x*(13+141*x+13*x^2)/((1+x)*(x-1)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 1, -1}, {13, 154, 180}, 40] %o A204766 (Magma) [(-167+115*(-1)^n+334*n)/4: n in [1..60]]; %Y A204766 Sequences of the type n^2 == 2 (mod p), where p is a prime of the form 8k-1: A047341, A155450, A164131, A164135, A167533, A167534, A177044, A177046, A204769. %Y A204766 Sequences of the type n^2 == 2 (mod p), where p is a prime of the form 8k+1: A155449, A158803, A159007, A159008, A176010, A206525, A206526. %K A204766 nonn,easy %O A204766 1,1 %A A204766 _Vincenzo Librandi_, Mar 09 2012