cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A205795 Sums of coefficients of polynomials from 5n-th moments of X ~ Hypergeometric(4m, 5m, m).

Original entry on oeis.org

24, 2880, 43545600, 5230697472000, 2432902008176640000, 3102242008666197196800000, 8841761993739701954543616000000, 49205466506600690141269768273920000000, 485663859076129603777149565235783270400000000, 7911522544013240381082219675638737768808448000000000
Offset: 1

Views

Author

John M. Campbell, Feb 09 2012

Keywords

Comments

See Maple code below for formula for such polynomials.

Examples

			The evaluation of sum(binomial(n, k)*binomial(4*n, k)*k^5, k = 0 .. n) involves the polynomial  256*n^5-640*n^3+400*n^2+108*n-100, the sum of the coefficients of which is 24 = a(1).
		

Crossrefs

Programs

  • Maple
    with(PolynomialTools);polyn:=w->simplify(Pi^2*sum(binomial(n,k)*binomial(4*n,k)*k^w,k=0..n)*5^w/3125^n*csc((1/5)*Pi)*csc((2/5)*Pi)*GAMMA(4*n)/GAMMA(n-(floor((w+1)/5)*5-2)/5)/GAMMA(n-(floor(w/5)*5-1)/5)/GAMMA(n-(floor((w+2)/5)*5-3)/5)/GAMMA(n-(floor((w+3)/5)*5-4)/5));coefl:=d->CoefficientList(expand(polyn(d)),n);seq(sum(coefl(5*h)[m],m=1..nops(coefl(5*h))),h=1..5);seq(simplify(12*5^(5*n-5)*GAMMA(n-4/5)*GAMMA(n-3/5)*GAMMA(n-2/5)*GAMMA(n-1/5)*(cos((2/5)*Pi)+cos((1/5)*Pi))/Pi^2),n=1..5);

Formula

a(n) = 120*A151989(n-2)*a(n-1), with a(1)=24.
a(n) = 12*5^(5*n-5)*GAMMA(n-4/5)*GAMMA(n-3/5)*GAMMA(n-2/5)*GAMMA(n-1/5)*(cos((2/5)*Pi)+cos((1/5)*Pi))/Pi^2.
Showing 1-1 of 1 results.