A204842 Triangle by rows relating to A081696.
1, 1, 2, 3, 4, 2, 9, 12, 6, 2, 29, 38, 20, 8, 2, 97, 126, 68, 30, 10, 2, 333, 430, 236, 110, 42, 12, 2, 1165, 1498, 832, 402, 166, 56, 14, 2, 4135, 5300, 2970, 1472, 640, 238, 72, 16, 2, 14845, 18980, 10710, 5410, 2440, 968, 328, 90, 18, 2
Offset: 0
Examples
First few rows of the triangle = 1; 1, 2; 3, 4, 2; 9, 12, 6, 2; 29, 38, 20, 8, 2; 97, 126, 68, 30, 10, 2; 333, 430, 236, 110, 42, 12, 2; 1165, 1498, 832, 402, 166, 56, 14, 2; 4135, 5300, 2970, 1472, 640, 238, 72, 16, 2; 14845, 18980, 10710, 5410, 2440, 968, 328, 90, 18, 2; ... Top row of M^3 = [9, 12, 6, 2, 0, 0, 0,...]
Crossrefs
Cf. A081696 (first column and also row sums).
Programs
-
Maple
A204842T := proc(n,k) if n =0 and k =1 then 2; elif k <0 or k >n+1 then 0; else 1; end if ; end proc: A204842 := proc(n,k) local A; A := Matrix(n+1,n+1) ; for row from 1 to n+1 do for col from 1 to n+1 do A[row, col] := A204842T(row-1,col-1) ; end do: end do: Mn := LinearAlgebra[MatrixPower](A , n); Mn[1,k+1] ; end proc: for n from 0 to 10 do for k from 0 to n do printf("%d ",A204842(n,k)) ; end do: printf("\n") ; end do:
Formula
n-th row of the triangle is the top row of M^n, where M is the following infinite square production matrix:
1, 2, 0, 0, 0, 0,...
1, 1, 1, 0, 0, 0,...
1, 1, 1, 1, 0, 0,...
1, 1, 1, 1, 1, 0,...
1, 1, 1, 1, 1, 1,...
...