This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204845 #31 May 01 2017 17:47:32 %S A204845 1,11,3,37,101,41,271,7,13,239,4649,73,137,333667,9091,21649,513239, %T A204845 9901,53,79,265371653,909091,31,2906161,17,5882353,2071723,5363222357, %U A204845 19,52579,1111111111111111111,3541,27961,43,1933,10838689,23,4093,8779,11111111111111111111111 %N A204845 Irregular triangle read by rows in which row n lists primitive prime factors of the repunit (10^n - 1)/9 (A002275(n)). %H A204845 Ray Chandler, <a href="/A204845/b204845.txt">Rows n = 1..322, flattened</a> (first 60 rows from Alois P. Heinz) %H A204845 Samuel Yates, <a href="http://www.jstor.org/stable/2689643">The Mystique of Repunits</a>, Math. Mag. 51 (1978), 22-28. %e A204845 Triangle begins: %e A204845 1 %e A204845 11 %e A204845 3 37 %e A204845 101 %e A204845 41 271 %e A204845 7 13 %e A204845 239 4649 %e A204845 73 137 %e A204845 333667 %e A204845 9091 %e A204845 ... %p A204845 with(numtheory): %p A204845 S:= proc(n) option remember; %p A204845 `if`(n=1, {1}, S(n-1) union factorset ((10^n-1)/9)) %p A204845 end: %p A204845 T:= n-> sort([(S(n) minus `if`(n=1, {}, S(n-1)))[]])[]: %p A204845 seq(T(n), n=1..30); # _Alois P. Heinz_, Feb 17 2012 %t A204845 S[n_] := S[n] = If[n==1, {1}, S[n-1] ~Union~ FactorInteger[(10^n-1)/9][[ All, 1]]]; T[n_] := Sort[S[n] ~Complement~ If[n==1, {}, S[n-1]]]; Table[ T[n], {n, 1, 30}] // Flatten (* _Jean-François Alcover_, Mar 13 2017, after _Alois P. Heinz_ *) %Y A204845 Cf. A002275, A102380, A204846, A204847, A204848. %K A204845 nonn,tabf %O A204845 1,2 %A A204845 _N. J. A. Sloane_, Jan 19 2012 %E A204845 More terms from _Alois P. Heinz_, Feb 17 2012