A204849 A Motzkin triangle by rows.
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 4, 1, 1, 21, 15, 8, 5, 1, 1, 51, 36, 22, 10, 6, 1, 1, 127, 91, 54, 30, 12, 7, 1, 1, 323, 232, 142, 75, 39, 14, 8, 1, 1, 835, 603, 370, 205, 99, 49, 16, 9, 1, 1, 2188, 1585, 983, 545, 281, 126, 60, 18, 10, 1, 1
Offset: 0
Examples
First few rows of the triangle = 1; 1, 1; 2, 1, 1; 4, 3, 1, 1; 9, 6, 4, 1, 1; 21, 15, 8, 5, 1, 1; 51, 36, 22, 10, 6, 1, 1; 127, 91, 54, 30, 12, 7, 1, 1; 323, 232, 142, 75, 39, 14, 8, 1, 1; 835, 603, 370, 205, 99, 49, 16, 9, 1, 1; 2188, 1585, 983, 545, 281, 126, 60, 18, 10, 1, 1; ... Top row of M^3 = [4, 3, 1, 1, 0, 0, 0, ...].
Crossrefs
Cf. A001006.
Formula
n-th row of the triangle is the top row of M^n (deleting the zeros), where M = the following infinite square production matrix:
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, ...
1, 1, 1, 0, 1, 0, 0, ...
1, 1, 1, 1, 0, 1, 0, ...
1, 1, 1, 1, 1, 0, 1, ...
...
Comments