cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204879 Numbers that can be written as sum of perfect numbers.

This page as a plain text file.
%I A204879 #24 Apr 15 2025 18:50:03
%S A204879 6,12,18,24,28,30,34,36,40,42,46,48,52,54,56,58,60,62,64,66,68,70,72,
%T A204879 74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,
%U A204879 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144
%N A204879 Numbers that can be written as sum of perfect numbers.
%C A204879 Complement of A204878; A097796(a(n)) > 0.
%C A204879 Up to the first odd perfect number (known to be > 10^300, if it exists), also: positive integers of the form 6k+28m, k>=0, m>=0. Contains all even numbers > 50, since any such number is either of the form 6k or 6k+28 or 6k+28*2. - _M. F. Hasler_, Feb 09 2012
%H A204879 Reinhard Zumkeller, <a href="/A204879/b204879.txt">Table of n, a(n) for n = 1..1000</a>
%H A204879 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectNumber.html">Perfect Number</a>
%H A204879 Wikipedia, <a href="http://www.wikipedia.org/wiki/Perfect_number">Perfect number</a>
%F A204879 A204879 = { 2k; k>25 } union { 6k; k>0 } union { 28, 34, 40, 46 }
%o A204879 (Haskell)
%o A204879 import Data.List (findIndices)
%o A204879 a204879 n = a204879_list !! (n-1)
%o A204879 a204879_list = map (+ 1) $ findIndices (> 0) a097796_list
%o A204879 (PARI)
%o A204879 /* The following code is valid up to occurrence of the first odd perfect number (if it exists), thus at least up to 10^300 */
%o A204879 is_A204879(n)={ n%2&return; n>50 || n%6==0 || n==28 || n==34 || n==40 || n==46 }
%o A204879 A204879(n)={ if(n>12,n+13,3*n-if(n>4,n*3\2-6))*2 } \\ _M. F. Hasler_, Feb 09 2012
%Y A204879 Cf. A000396 (perfect numbers).
%K A204879 nonn
%O A204879 1,1
%A A204879 _Reinhard Zumkeller_, Jan 20 2012