This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204892 #34 Mar 30 2025 04:26:08 %S A204892 2,3,3,4,4,5,7,5,5,6,6,7,10,7,7,8,8,9,13,9,9,10,16,10,16,10,10,11,11, %T A204892 12,19,12,20,12,12,13,22,13,13,14,14,15,24,15,15,16,25,16,26,16,16,17, %U A204892 29,17,30,17,17,18,18,19,31,19,32,19,19,20,33,20,20,21 %N A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k). %C A204892 Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h<h'<=n. Then s(i+h) is congruent mod n to s(i+h'), so that there exist j and k in N such that j<k and n divides s(k)-s(j). Let k(n) be the least k for which such j exists, and let j(n)=j. The pair (k,j) will be called the "least pair for which n divides s(k)-s(j)." (However, starting with "least j for which there is a k" yields pairs (k,j) which differ from those already described.) %C A204892 Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing. %C A204892 Guide to related sequences: %C A204892 ... %C A204892 s(n)=prime(n), primes %C A204892 ... k(n), j(n): A204892, A204893 %C A204892 ... s(k(n)),s(j(n)): A204894, A204895 %C A204892 ... s(k(n))-s(j(n)): A204896, A204897 %C A204892 s(n)=prime(n+1), odd primes %C A204892 ... k(n), j(n): A204900, A204901 %C A204892 ... s(k(n)),s(j(n)): A204902, A204903 %C A204892 ... s(k(n))-s(j(n)): A109043(?), A000034(?) %C A204892 s(n)=prime(n+2), primes >=5 %C A204892 ... k(n), j(n): A204908, A204909 %C A204892 ... s(k(n)),s(j(n)): A204910, A204911 %C A204892 ... s(k(n))-s(j(n)): A109043(?), A000034(?) %C A204892 s(n)=prime(n)*prime(n+1) product of consecutive primes %C A204892 ... k(n), j(n): A205146, A205147 %C A204892 ... s(k(n)),s(j(n)): A205148, A205149 %C A204892 ... s(k(n))-s(j(n)): A205150, A205151 %C A204892 s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes %C A204892 ... k(n), j(n): A205153, A205154 %C A204892 ... s(k(n)),s(j(n)): A205372, A205373 %C A204892 ... s(k(n))-s(j(n)): A205374, A205375 %C A204892 s(n)=2^(n-1), powers of 2 %C A204892 ... k(n), j(n): A204979, A001511(?) %C A204892 ... s(k(n)),s(j(n)): A204981, A006519(?) %C A204892 ... s(k(n))-s(j(n)): A204983(?), A204984 %C A204892 s(n)=2^n, powers of 2 %C A204892 ... k(n), j(n): A204987, A204988 %C A204892 ... s(k(n)),s(j(n)): A204989, A140670(?) %C A204892 ... s(k(n))-s(j(n)): A204991, A204992 %C A204892 s(n)=C(n+1,2), triangular numbers %C A204892 ... k(n), j(n): A205002, A205003 %C A204892 ... s(k(n)),s(j(n)): A205004, A205005 %C A204892 ... s(k(n))-s(j(n)): A205006, A205007 %C A204892 s(n)=n^2, squares %C A204892 ... k(n), j(n): A204905, A204995 %C A204892 ... s(k(n)),s(j(n)): A204996, A204997 %C A204892 ... s(k(n))-s(j(n)): A204998, A204999 %C A204892 s(n)=(2n-1)^2, odd squares %C A204892 ... k(n), j(n): A205378, A205379 %C A204892 ... s(k(n)),s(j(n)): A205380, A205381 %C A204892 ... s(k(n))-s(j(n)): A205382, A205383 %C A204892 s(n)=n(3n-1), pentagonal numbers %C A204892 ... k(n), j(n): A205138, A205139 %C A204892 ... s(k(n)),s(j(n)): A205140, A205141 %C A204892 ... s(k(n))-s(j(n)): A205142, A205143 %C A204892 s(n)=n(2n-1), hexagonal numbers %C A204892 ... k(n), j(n): A205130, A205131 %C A204892 ... s(k(n)),s(j(n)): A205132, A205133 %C A204892 ... s(k(n))-s(j(n)): A205134, A205135 %C A204892 s(n)=C(2n-2,n-1), central binomial coefficients %C A204892 ... k(n), j(n): A205010, A205011 %C A204892 ... s(k(n)),s(j(n)): A205012, A205013 %C A204892 ... s(k(n))-s(j(n)): A205014, A205015 %C A204892 s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients) %C A204892 ... k(n), j(n): A205386, A205387 %C A204892 ... s(k(n)),s(j(n)): A205388, A205389 %C A204892 ... s(k(n))-s(j(n)): A205390, A205391 %C A204892 s(n)=n(n+1), oblong numbers %C A204892 ... k(n), j(n): A205018, A205028 %C A204892 ... s(k(n)),s(j(n)): A205029, A205030 %C A204892 ... s(k(n))-s(j(n)): A205031, A205032 %C A204892 s(n)=n!, factorials %C A204892 ... k(n), j(n): A204932, A204933 %C A204892 ... s(k(n)),s(j(n)): A204934, A204935 %C A204892 ... s(k(n))-s(j(n)): A204936, A204937 %C A204892 s(n)=n!!, double factorials %C A204892 ... k(n), j(n): A204982, A205100 %C A204892 ... s(k(n)),s(j(n)): A205101, A205102 %C A204892 ... s(k(n))-s(j(n)): A205103, A205104 %C A204892 s(n)=3^n-2^n %C A204892 ... k(n), j(n): A205000, A205107 %C A204892 ... s(k(n)),s(j(n)): A205108, A205109 %C A204892 ... s(k(n))-s(j(n)): A205110, A205111 %C A204892 s(n)=Fibonacci(n+1) %C A204892 ... k(n), j(n): A204924, A204925 %C A204892 ... s(k(n)),s(j(n)): A204926, A204927 %C A204892 ... s(k(n))-s(j(n)): A204928, A204929 %C A204892 s(n)=Fibonacci(2n-1) %C A204892 ... k(n), j(n): A205442, A205443 %C A204892 ... s(k(n)),s(j(n)): A205444, A205445 %C A204892 ... s(k(n))-s(j(n)): A205446, A205447 %C A204892 s(n)=Fibonacci(2n) %C A204892 ... k(n), j(n): A205450, A205451 %C A204892 ... s(k(n)),s(j(n)): A205452, A205453 %C A204892 ... s(k(n))-s(j(n)): A205454, A205455 %C A204892 s(n)=Lucas(n) %C A204892 ... k(n), j(n): A205114, A205115 %C A204892 ... s(k(n)),s(j(n)): A205116, A205117 %C A204892 ... s(k(n))-s(j(n)): A205118, A205119 %C A204892 s(n)=n*(2^(n-1)) %C A204892 ... k(n), j(n): A205122, A205123 %C A204892 ... s(k(n)),s(j(n)): A205124, A205125 %C A204892 ... s(k(n))-s(j(n)): A205126, A205127 %C A204892 s(n)=ceiling[n^2/2] %C A204892 ... k(n), j(n): A205394, A205395 %C A204892 ... s(k(n)),s(j(n)): A205396, A205397 %C A204892 ... s(k(n))-s(j(n)): A205398, A205399 %C A204892 s(n)=floor[(n+1)^2/2] %C A204892 ... k(n), j(n): A205402, A205403 %C A204892 ... s(k(n)),s(j(n)): A205404, A205405 %C A204892 ... s(k(n))-s(j(n)): A205406, A205407 %H A204892 Charles R Greathouse IV, <a href="/A204892/b204892.txt">Table of n, a(n) for n = 1..10000</a> %e A204892 Let s(k)=prime(k). As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here: %e A204892 k...........1..2..3..4..5...6...7...8...9 %e A204892 s(k)........2..3..5..7..11..13..17..19..23 %e A204892 ... %e A204892 s(k)-s(1)......1..3..5..9..11..15..17..21..27 %e A204892 s(k)-s(2).........2..4..8..10..14..16..20..26 %e A204892 s(k)-s(3)............2..6..8...12..14..18..24 %e A204892 s(k)-s(4)...............4..6...10..12..16..22 %e A204892 ... %e A204892 least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2. %e A204892 least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3. %e A204892 least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3. %t A204892 s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50; %t A204892 Table[s[n], {n, 1, 30}] (* A000040 *) %t A204892 u[m_] := u[m] = Flatten[Table[s[k] - s[j], %t A204892 {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A204892 Table[u[m], {m, 1, z1}] (* A204890 *) %t A204892 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A204892 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A204892 d[n_] := d[n] = First[Delete[w[n], %t A204892 Position[w[n], 0]]] %t A204892 Table[d[n], {n, 1, z2}] (* A204891 *) %t A204892 k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] %t A204892 m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] %t A204892 j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 %t A204892 Table[k[n], {n, 1, z2}] (* A204892 *) %t A204892 Table[j[n], {n, 1, z2}] (* A204893 *) %t A204892 Table[s[k[n]], {n, 1, z2}] (* A204894 *) %t A204892 Table[s[j[n]], {n, 1, z2}] (* A204895 *) %t A204892 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204896 *) %t A204892 Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *) %t A204892 (* Program 2: generates A204892 and A204893 rapidly *) %t A204892 s = Array[Prime[#] &, 120]; %t A204892 lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}] %t A204892 Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] %t A204892 (* _Peter J. C. Moses_, Jan 27 2012 *) %o A204892 (PARI) a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ _Charles R Greathouse IV_, Mar 20 2013 %Y A204892 Cf. A000040, A204890. %K A204892 nonn %O A204892 1,1 %A A204892 _Clark Kimberling_, Jan 20 2012