This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204916 #5 Mar 30 2012 18:58:08 %S A204916 2,3,3,3,2,4,3,3,4,4,6,4,5,5,4,3,8,5,7,4,3,7,10,4,9,8,10,5,11,6,10,5, %T A204916 6,9,7,5,14,11,5,4,14,7,13,7,4,10,16,5,15,11,8,8,17,11,6,5,7,13,18,6 %N A204916 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=(prime(k))^2. %C A204916 See A204892 for a discussion and guide to related sequences %t A204916 s[n_] := s[n] = Prime[n]^2; z1 = 1000; z2 = 60; %t A204916 Table[s[n], {n, 1, 30}] (* A001248 *) %t A204916 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A204916 Table[u[m], {m, 1, z1}] (* A204914 *) %t A204916 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A204916 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A204916 d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] %t A204916 Table[d[n], {n, 1, z2}] (* A204915 *) %t A204916 k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] %t A204916 m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] %t A204916 j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 %t A204916 Table[k[n], {n, 1, z2}] (* A204916 *) %t A204916 Table[j[n], {n, 1, z2}] (* A204917 *) %t A204916 Table[s[k[n]], {n, 1, z2}] (* A204918 *) %t A204916 Table[s[j[n]], {n, 1, z2}] (* A204919 *) %t A204916 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204920 *) %t A204916 Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204921 *) %Y A204916 Cf. A000040, A204892, A204900, A204908. %K A204916 nonn %O A204916 1,1 %A A204916 _Clark Kimberling_, Jan 20 2012