This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204919 #10 May 05 2019 04:31:37 %S A204919 4,9,4,9,4,25,4,9,4,9,4,25,4,9,4,9,4,49,4,9,4,25,289,25,4,49,4,9,4,49, %T A204919 4,25,4,121,9,49,961,49,4,9,4,121,4,25,4,289,1681,25,4,361,4,49,2209, %U A204919 529,4,9,4,289,4,49 %N A204919 a(n) = q^2 where q is the least prime such that n divides A204916(n)^2 - q^2. %C A204919 For a guide to related sequences, see A204892. %C A204919 Original name was "Least prime q^2 such that n divides p^2-q^2 for some prime p>q", which would be A089090. - _Robert Israel_, May 04 2019 %H A204919 Robert Israel, <a href="/A204919/b204919.txt">Table of n, a(n) for n = 1..10000</a> %p A204919 N:= 100: # to get a(1)..a(N) %p A204919 A:= Vector(N): count:= 0: %p A204919 p:= 2: P:= 2: %p A204919 for i from 1 while count < N do %p A204919 p:= nextprime(p); %p A204919 ps:= p^2; %p A204919 P:= P, p; %p A204919 for j from 1 to i while count < N do %p A204919 qs:= P[j]^2; %p A204919 S:= convert(select(t -> t <= N and A[t]=0, numtheory:-divisors(ps-qs)),list); %p A204919 A[S]:= qs; %p A204919 count:= count + nops(S); %p A204919 od od: %p A204919 convert(A,list); # _Robert Israel_, May 04 2019 %t A204919 (See the program at A204916.) %Y A204919 Cf. A089090, A204916, A204908, A204900, A204892. %K A204919 nonn %O A204919 1,1 %A A204919 _Clark Kimberling_, Jan 20 2012 %E A204919 Name corrected by _Robert Israel_, May 04 2019