This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204932 #10 Nov 11 2024 01:59:20 %S A204932 2,3,4,3,3,4,5,5,4,6,4,5,9,6,6,5,5,4,5,6,6,4,4,5,6,9,7,8,6,6,10,5,7,6, %T A204932 8,7,13,5,9,6,7,6,11,7,7,8,10,5,8,6,6,9,12,7,8,8,5,6,5,6,16,10,8,9,14, %U A204932 7,8,11,8,8,9,7,8,13,6,7,12,9,14,7,10,7,19,8,11,11,6,7,10,7 %N A204932 Least k such that n divides k!-j! for some j satisfying 1<=j<k. %C A204932 See A204892 for a discussion and guide to related sequences. %H A204932 Robert Israel, <a href="/A204932/b204932.txt">Table of n, a(n) for n = 1..10000</a> %e A204932 1 divides 2!-1!, so a(1)=2 %e A204932 2 divides 3!-2!, so a(2)=3 %e A204932 3 divides 4!-3!, so a(3)=4 %e A204932 13 divides 9!-4!, so a(13)=9 %p A204932 f:= proc(n) local t, k, V; %p A204932 t:= 1: %p A204932 for k from 1 do %p A204932 t:= t*k mod n; %p A204932 if assigned(V[t]) then return k else V[t]:= k fi %p A204932 od %p A204932 end proc: %p A204932 map(f, [$1..100]); # _Robert Israel_, Nov 11 2024 %t A204932 s[n_] := s[n] = n!; z1 = 80; z2 = 60; %t A204932 Table[s[n], {n, 1, 30}] (* A000142 *) %t A204932 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A204932 Table[u[m], {m, 1, z1}] (* A204930 *) %t A204932 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A204932 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A204932 d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] %t A204932 Table[d[n], {n, 1, z2}] (* A204931 *) %t A204932 k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] %t A204932 m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] %t A204932 j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 %t A204932 Table[k[n], {n, 1, z2}] (* A204932 *) %t A204932 Table[j[n], {n, 1, z2}] (* A204933 *) %t A204932 Table[s[k[n]], {n, 1, z2}] (* A204934 *) %t A204932 Table[s[j[n]], {n, 1, z2}] (* A204935 *) %t A204932 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204936 *) %t A204932 Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204937 *) %Y A204932 Cf. A000142, A204892. %K A204932 nonn %O A204932 1,1 %A A204932 _Clark Kimberling_, Jan 21 2012