This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204979 #9 Mar 30 2012 18:58:08 %S A204979 2,3,3,4,5,4,4,5,7,6,11,5,13,5,5,6,9,8,19,7,7,12,12,6,21,14,19,6,29,6, %T A204979 6,7,11,10,13,9,37,20,13,8,21,8,15,13,13,13,24,7,22,22 %N A204979 Least k such that n divides 2^(k-1)-2^(j-1) for some j satisfying 1<=j<k. %C A204979 See A204892 for a discussion and guide to related sequences. %e A204979 1 divides 2^2-2^1, so a(1)=2 %e A204979 2 divides 2^3-2^2, so a(2)=3 %e A204979 3 divides 2^3-2^1, so a(3)=3 %e A204979 4 divides 2^4-2^3, so a(4)=4 %t A204979 s[n_] := s[n] = 2^(n - 1); z1 = 800; z2 = 50; %t A204979 Table[s[n], {n, 1, 30}] (* A000079 *) %t A204979 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A204979 Table[u[m], {m, 1, z1}] (* A130328 *) %t A204979 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A204979 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A204979 d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] %t A204979 Table[d[n], {n, 1, z2}] (* A204939 *) %t A204979 k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] %t A204979 m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] %t A204979 j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 %t A204979 Table[k[n], {n, 1, z2}] (* A204979 *) %t A204979 Table[j[n], {n, 1, z2}] (* A001511 ? *) %t A204979 Table[s[k[n]], {n, 1, z2}] (* A204981 *) %t A204979 Table[s[j[n]], {n, 1, z2}] (* A006519 ? *) %t A204979 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204983 *) %t A204979 Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204984 *) %Y A204979 Cf. A000079, A204892. %K A204979 nonn %O A204979 1,1 %A A204979 _Clark Kimberling_, Jan 21 2012