This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204988 #36 Oct 22 2022 08:06:37 %S A204988 1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,4,1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,5,1,1, %T A204988 1,2,1,1,1,3,1,1,1,2,1,1,1,4,1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,6,1,1,1,2, %U A204988 1,1,1,3,1,1,1,2,1,1,1,4,1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,5,1,1,1,2,1,1,1,3,1 %N A204988 The index j < k such that n divides 2^k - 2^j, where k is the least index (A204987) for which such j exists. %C A204988 For a guide to related sequences, see A204892. %H A204988 Antti Karttunen, <a href="/A204988/b204988.txt">Table of n, a(n) for n = 1..6556</a> %F A204988 a(n) = A007814(n) + (1-(-1)^n)/2 (conjecture). - _Velin Yanev_, Nov 14 2016. %F A204988 From _Andrew Howroyd_, Aug 08 2018: (Start) %F A204988 The above conjecture is true because the definition of this sequence and A204987 requires j to be at least 1 and 2^k - 2^j can be written 2^j*(2^(k-j) - 1). %F A204988 a(n) = max(1, A007814(n)). (End) %F A204988 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - _Amiram Eldar_, Oct 22 2022 %e A204988 (See example at A204987.) %t A204988 (See the program at A204987.) %t A204988 a[n_] := Max[1, IntegerExponent[n, 2]]; Array[a, 100] (* _Amiram Eldar_, Oct 22 2022 *) %o A204988 (PARI) \\ Use the program at A204987. - _Antti Karttunen_, Nov 19 2017 %o A204988 (PARI) a(n)=max(1, valuation(n,2)); \\ _Andrew Howroyd_, Aug 08 2018 %Y A204988 Cf. A007814, A204892, A204987. %K A204988 nonn,mult %O A204988 1,4 %A A204988 _Clark Kimberling_, Jan 21 2012 %E A204988 More terms from _Antti Karttunen_, Nov 19 2017 %E A204988 Keyword:mult added by _Andrew Howroyd_, Aug 08 2018