This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205018 #5 Mar 30 2012 18:58:10 %S A205018 2,2,3,2,3,3,4,4,4,3,6,5,7,4,6,8,9,4,10,6,8,6,12,5,7,7,7,5,15,6,16,16, %T A205018 8,9,8,6,19,10,9,6,21,8,22,7,10,12,24,9,10,7,11,8,27,7,13,11,12,15,30, %U A205018 8 %N A205018 Least k such that n divides s(k)-s(j) for some j satisfying 1<=j<k, where s(j)=j*(j+1). %C A205018 See A204892 for a discussion and guide to related sequences. %t A205018 s[n_] := s[n] = n*(n + 1); z1 = 500; z2 = 60; %t A205018 Table[s[n], {n, 1, 30}] (* A002378 *) %t A205018 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205018 Table[u[m], {m, 1, z1}] (* A205016 *) %t A205018 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205018 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205018 d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] %t A205018 Table[d[n], {n, 1, z2}] (* A205017 *) %t A205018 k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] %t A205018 m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] %t A205018 j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 %t A205018 Table[k[n], {n, 1, z2}] (* A205018 *) %t A205018 Table[j[n], {n, 1, z2}] (* A205028 *) %t A205018 Table[s[k[n]], {n, 1, z2}] (* A205029 *) %t A205018 Table[s[j[n]], {n, 1, z2}] (* A205030 *) %t A205018 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205031 *) %t A205018 Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205032 *) %Y A205018 Cf. A002378, A204892, A205016. %K A205018 nonn %O A205018 1,1 %A A205018 _Clark Kimberling_, Jan 22 2012