cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205193 T(n,k) = Number of (n+1) X (k+1) 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock differing from each horizontal or vertical neighbor.

Original entry on oeis.org

16, 24, 24, 48, 40, 48, 72, 64, 64, 72, 144, 104, 124, 104, 144, 216, 168, 160, 160, 168, 216, 432, 272, 292, 256, 292, 272, 432, 648, 440, 384, 384, 384, 384, 440, 648, 1296, 712, 708, 576, 736, 576, 708, 712, 1296, 1944, 1152, 928, 864, 896, 896, 864, 928, 1152
Offset: 1

Views

Author

R. H. Hardin, Jan 23 2012

Keywords

Comments

Table starts
..16..24..48...72..144..216..432..648..1296..1944..3888..5832.11664.17496.34992
..24..40..64..104..168..272..440..712..1152..1864..3016..4880..7896.12776.20672
..48..64.124..160..292..384..708..928..1708..2240..4124..5408..9956.13056.24036
..72.104.160..256..384..576..864.1312..1984..3008..4544..6880.10400.15744.23808
.144.168.292..384..736..896.1568.1920..3392..4224..7520..9344.16608.20608.36608
.216.272.384..576..896.1408.2048.2944..4224..6144..8960.13184.19328.28416.41600
.432.440.708..864.1568.2048.3904.4608..7872..9216.15808.18944.32960.39936.69824
.648.712.928.1312.1920.2944.4608.7168.10240.14336.19968.28160.39936.57344.82432

Examples

			Some solutions for n=4, k=3
..1..0..0..1....0..1..1..0....1..1..1..0....0..0..1..1....1..1..0..0
..0..1..1..0....0..1..1..1....0..1..1..0....0..0..1..1....1..1..0..0
..1..1..1..0....1..0..1..1....1..0..0..1....1..1..0..0....0..0..1..1
..1..1..0..1....1..1..0..1....0..0..0..1....1..1..0..0....0..0..1..1
..1..0..1..1....1..1..1..0....0..0..1..0....0..0..1..0....1..1..0..1
		

Crossrefs

Column 2 is A022091(n+3).

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-2);
k=2: a(n) = a(n-1) +a(n-2);
k=3: a(n) = 2*a(n-2) +a(n-4) for n>5;
k=4: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>6;
k=5: a(n) = 2*a(n-2) +a(n-6) for n>9;
k=6: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) for n>10;
k=7: a(n) = 2*a(n-2) +a(n-8) for n>13;
k=8: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) for n>14;
k=9: a(n) = 2*a(n-2) +a(n-10) for n>17;
k=10: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-9) +a(n-10) for n>18;
k=11: a(n) = 2*a(n-2) +a(n-12) for n>21;
k=12: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-9) +a(n-10) -a(n-11) +a(n-12) for n>22;
k=13: a(n) = 2*a(n-2) +a(n-14) for n>25;
k=14: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-9) +a(n-10) -a(n-11) +a(n-12) -a(n-13) +a(n-14) for n>26;
k=15: a(n) = 2*a(n-2) +a(n-16) for n>29;
apparently:
k odd a(n) = 2*a(n-2) +a(n-k-1) for n>2k-1;
k even a(n) = a(n-1) +sum{i in 2..k}(-1^i*a(n-i)) for n>2k-2.