A205193 T(n,k) = Number of (n+1) X (k+1) 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock differing from each horizontal or vertical neighbor.
16, 24, 24, 48, 40, 48, 72, 64, 64, 72, 144, 104, 124, 104, 144, 216, 168, 160, 160, 168, 216, 432, 272, 292, 256, 292, 272, 432, 648, 440, 384, 384, 384, 384, 440, 648, 1296, 712, 708, 576, 736, 576, 708, 712, 1296, 1944, 1152, 928, 864, 896, 896, 864, 928, 1152
Offset: 1
Examples
Some solutions for n=4, k=3 ..1..0..0..1....0..1..1..0....1..1..1..0....0..0..1..1....1..1..0..0 ..0..1..1..0....0..1..1..1....0..1..1..0....0..0..1..1....1..1..0..0 ..1..1..1..0....1..0..1..1....1..0..0..1....1..1..0..0....0..0..1..1 ..1..1..0..1....1..1..0..1....0..0..0..1....1..1..0..0....0..0..1..1 ..1..0..1..1....1..1..1..0....0..0..1..0....0..0..1..0....1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1300
Crossrefs
Column 2 is A022091(n+3).
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-2);
k=2: a(n) = a(n-1) +a(n-2);
k=3: a(n) = 2*a(n-2) +a(n-4) for n>5;
k=4: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>6;
k=5: a(n) = 2*a(n-2) +a(n-6) for n>9;
k=6: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) for n>10;
k=7: a(n) = 2*a(n-2) +a(n-8) for n>13;
k=8: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) for n>14;
k=9: a(n) = 2*a(n-2) +a(n-10) for n>17;
k=10: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-9) +a(n-10) for n>18;
k=11: a(n) = 2*a(n-2) +a(n-12) for n>21;
k=12: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-9) +a(n-10) -a(n-11) +a(n-12) for n>22;
k=13: a(n) = 2*a(n-2) +a(n-14) for n>25;
k=14: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-9) +a(n-10) -a(n-11) +a(n-12) -a(n-13) +a(n-14) for n>26;
k=15: a(n) = 2*a(n-2) +a(n-16) for n>29;
apparently:
k odd a(n) = 2*a(n-2) +a(n-k-1) for n>2k-1;
k even a(n) = a(n-1) +sum{i in 2..k}(-1^i*a(n-i)) for n>2k-2.
Comments