A205253 Number of (n+1)X7 0..1 arrays with the number of clockwise edge increases in every 2X2 subblock the same.
2920, 71000, 1764364, 44183032, 1109832184, 27913330476, 702420750928, 17679917387408, 445045123432100, 11203277447970640, 282028756620227128, 7099777698513424924, 178729975670304808352, 4499358353656818662432
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0..1..0..1....0..1..1..1..0..0..1....1..1..0..0..0..0..1 ..1..1..0..1..1..0..0....0..1..0..0..0..1..1....1..0..0..1..0..1..1 ..0..0..0..0..1..1..0....1..1..1..0..1..1..0....1..0..1..1..1..1..0 ..0..1..0..1..1..0..0....1..0..1..0..0..0..0....1..1..1..0..1..0..0 ..0..0..0..1..0..0..1....0..0..1..0..1..1..1....1..0..0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 56*a(n-1) -1164*a(n-2) +12439*a(n-3) -78536*a(n-4) +314610*a(n-5) -829844*a(n-6) +1464316*a(n-7) -1728640*a(n-8) +1345964*a(n-9) -671600*a(n-10) +205552*a(n-11) -36416*a(n-12) +3392*a(n-13) -128*a(n-14)
Comments