cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205306 Number of nX4 0..3 arrays with no occurrence of three equal elements in a row horizontally or vertically, and new values 0..3 introduced in row major order.

Original entry on oeis.org

12, 2191, 381958, 70985206, 13049279920, 2404472055439, 442834241887042, 81565593153176155, 15023237028425135528, 2767081708267517685850, 509659402434339115696776, 93872456554136530629815555
Offset: 1

Views

Author

R. H. Hardin Jan 25 2012

Keywords

Comments

Column 4 of A205310

Examples

			Some solutions for n=5
..0..1..0..2....0..0..1..0....0..0..1..2....0..0..1..0....0..0..1..1
..0..3..3..0....0..2..1..3....0..2..2..1....0..0..1..2....1..0..2..1
..1..3..2..1....2..0..2..0....1..0..1..1....1..1..2..3....0..1..0..2
..1..2..1..1....2..0..1..2....2..2..1..0....1..3..3..1....2..1..0..3
..0..2..0..3....1..3..0..0....0..3..0..0....2..3..0..1....1..0..1..0
		

Formula

Empirical: a(n) = 138*a(n-1) +9087*a(n-2) -80152*a(n-3) -5124946*a(n-4) +37705868*a(n-5) +99346827*a(n-6) +17722141556*a(n-7) -261185384994*a(n-8) +714699066626*a(n-9) -15202912141613*a(n-10) +304934550079298*a(n-11) -1225389716322737*a(n-12) -933781202067468*a(n-13) -33805706864300454*a(n-14) +185474258286271178*a(n-15) +1505623972530492162*a(n-16) -5117407741799018012*a(n-17) -25380195891304445642*a(n-18) +36229117914918274800*a(n-19) +251716664318924304110*a(n-20) -57605851368069887202*a(n-21) -1572473827570790923150*a(n-22) +3125955801166175823856*a(n-23) +17062517535287193726997*a(n-24) -32422586388875348507390*a(n-25) -159910400746542325205407*a(n-26) +54332608228198865319136*a(n-27) +661022488412915752154803*a(n-28) -721321139998771867284976*a(n-29) -3898866024012351846512850*a(n-30) +8412783886991366949353912*a(n-31) +30366027249263904221568708*a(n-32) -31118625776087432549655374*a(n-33) -111729795190877573537105846*a(n-34) +173816789359823529339671964*a(n-35) +553846546751160710968339655*a(n-36) -491036374242582108130054650*a(n-37) -2388488759973180614259754299*a(n-38) +22872473135117365385257812*a(n-39) +3637708187356950277191989337*a(n-40) -5888644440469728116298052320*a(n-41) -11635513023181409403942859614*a(n-42) +21091653515446386649943887296*a(n-43) +46583550442447069247305690806*a(n-44) -12430137563792000600050770102*a(n-45) -75388261189276904319964385046*a(n-46) +5063083350236789682463303536*a(n-47) +82424407966823722700175286140*a(n-48) -21774887291888889019777511748*a(n-49) -57879941791365958357832645088*a(n-50) +37727395614936350378426942136*a(n-51) +19448471990119789641851858295*a(n-52) -25295452552287517410871856028*a(n-53) -1750790964891024780004737837*a(n-54) +8054517038069608971655873284*a(n-55) +238128699519517099475692602*a(n-56) -2376060075223639793908923996*a(n-57) -401856855452402783889059865*a(n-58) +1146937237342456226969479554*a(n-59) +181659002124956734165606650*a(n-60) -391677684362411951192598594*a(n-61) -58125167210869815728999295*a(n-62) +77982926942952062273163618*a(n-63) -1014467950258371834786963*a(n-64) -13318075675102589346103236*a(n-65) -2967557913938184769133316*a(n-66) +12477808904841273824317728*a(n-67) +4694214069617141148458976*a(n-68) -6736162769502273391513536*a(n-69) -1685763587529755229146112*a(n-70) +1487182043605291803500544*a(n-71) +445045584055138381209600*a(n-72) -248152311461700801478656*a(n-73) -19790145808333878067200*a(n-74) +11874087485000326840320*a(n-75)