A205314 Number of (n+1) X 5 0..1 arrays with every 2 X 2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.
164, 1708, 18152, 193664, 2068148, 22091516, 235994088, 2521075824, 26932295140, 287714402188, 3073619242616, 32835119205664, 350773799961748, 3747276188396572, 40031720975324552, 427654276187965520
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..0..0....0..0..0..0..1....0..1..0..1..0....0..1..0..1..0 ..1..1..1..1..1....0..1..1..0..0....1..1..0..0..0....0..0..0..0..0 ..1..0..0..0..0....1..1..0..0..1....1..0..0..1..0....0..1..1..0..1 ..1..1..1..1..0....0..0..0..1..1....1..1..0..1..1....1..1..0..0..1 ..0..1..0..0..0....1..1..0..0..1....1..0..0..1..0....1..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A205318.
Formula
Empirical: a(n) = 17*a(n-1) -81*a(n-2) +157*a(n-3) -140*a(n-4) +56*a(n-5) -8*a(n-6).
Empirical g.f.: 4*x*(41 - 270*x + 600*x^2 - 580*x^3 + 244*x^4 - 36*x^5) / ((1 - x)*(1 - 16*x + 65*x^2 - 92*x^3 + 48*x^4 - 8*x^5)). - Colin Barker, Jun 11 2018
Comments