cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A205311 Number of (n+1) X (n+1) 0..1 arrays with every 2 X 2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.

Original entry on oeis.org

8, 84, 2606, 193664, 33865634, 13956665238, 13574876544398, 31191658416342676, 169426507164530254382, 2176592549084872196370726, 66158464020552857153017287242, 4759146677426447759184119036493678
Offset: 1

Views

Author

R. H. Hardin Jan 25 2012

Keywords

Comments

Diagonal of A205318.

Examples

			Some solutions for n=4
..0..1..1..1..0....0..1..0..0..0....0..1..1..0..0....0..0..0..0..1
..1..1..0..1..0....1..1..0..1..0....0..1..0..0..1....0..1..0..1..1
..1..0..0..0..0....0..0..0..0..0....1..1..1..0..0....0..1..1..1..0
..0..0..1..0..1....1..1..0..1..0....0..0..1..0..1....0..1..0..1..1
..0..1..1..0..0....1..0..0..1..0....0..1..1..0..1....1..1..1..1..0
		

Crossrefs

Cf. A205318.

A205312 Number of (n+1) X 3 0..1 arrays with every 2 X 2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.

Original entry on oeis.org

20, 84, 376, 1708, 7784, 35500, 161928, 738636, 3369320, 15369324, 70107976, 319801228, 1458790184, 6654348460, 30354161928, 138462112716, 631602239720, 2881086973164, 13142230386376, 59948977985548, 273460429154984
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2012

Keywords

Comments

Column 2 of A205318.

Examples

			Some solutions for n=4:
..0..0..0....0..1..0....0..0..1....0..1..1....0..0..1....0..1..0....0..0..1
..0..0..0....0..1..0....0..1..1....1..1..0....0..1..1....0..0..0....0..1..1
..0..0..0....0..1..1....1..1..0....1..0..0....0..0..1....1..0..1....0..1..0
..0..0..0....1..1..0....0..1..0....1..1..1....0..1..1....0..0..1....0..0..0
..0..0..0....1..0..0....0..0..0....0..0..1....1..1..0....0..1..1....1..0..1
		

Crossrefs

Cf. A205318.

Formula

Empirical: a(n) = 6*a(n-1) -7*a(n-2) +2*a(n-3).
Empirical g.f.: 4*x*(5 - 9*x + 3*x^2) / ((1 - x)*(1 - 5*x + 2*x^2)). - Colin Barker, Jun 11 2018

A205313 Number of (n+1) X 4 0..1 arrays with every 2 X 2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.

Original entry on oeis.org

56, 376, 2606, 18152, 126536, 882182, 6150512, 42881096, 298965278, 2084374136, 14532174632, 101317751318, 706383387200, 4924877262824, 34336051065326, 239389600968776, 1669014906316040, 11636306448704678, 81127872049414160
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2012

Keywords

Comments

Column 3 of A205318.

Examples

			Some solutions for n=4:
..0..1..0..1....0..1..1..0....0..0..0..0....0..0..1..1....0..0..1..0
..1..1..1..1....1..1..0..0....0..1..1..0....0..1..1..0....0..1..1..1
..0..1..0..0....0..0..0..1....1..1..0..0....0..0..0..0....1..1..0..0
..0..0..0..1....0..1..1..1....1..0..0..1....0..1..1..0....1..0..0..1
..1..1..1..1....0..1..0..0....1..1..0..1....1..1..0..0....0..0..1..1
		

Crossrefs

Cf. A205318.

Formula

Empirical: a(n) = 10*a(n-1) -24*a(n-2) +21*a(n-3) -6*a(n-4).
Empirical g.f.: 2*x*(2 - 3*x)*(14 - 25*x + 10*x^2) / ((1 - x)*(1 - 9*x + 15*x^2 - 6*x^3)). - Colin Barker, Jun 11 2018

A205314 Number of (n+1) X 5 0..1 arrays with every 2 X 2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.

Original entry on oeis.org

164, 1708, 18152, 193664, 2068148, 22091516, 235994088, 2521075824, 26932295140, 287714402188, 3073619242616, 32835119205664, 350773799961748, 3747276188396572, 40031720975324552, 427654276187965520
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2012

Keywords

Comments

Column 4 of A205318.

Examples

			Some solutions for n=4:
..0..0..1..0..0....0..0..0..0..1....0..1..0..1..0....0..1..0..1..0
..1..1..1..1..1....0..1..1..0..0....1..1..0..0..0....0..0..0..0..0
..1..0..0..0..0....1..1..0..0..1....1..0..0..1..0....0..1..1..0..1
..1..1..1..1..0....0..0..0..1..1....1..1..0..1..1....1..1..0..0..1
..0..1..0..0..0....1..1..0..0..1....1..0..0..1..0....1..0..0..1..1
		

Crossrefs

Cf. A205318.

Formula

Empirical: a(n) = 17*a(n-1) -81*a(n-2) +157*a(n-3) -140*a(n-4) +56*a(n-5) -8*a(n-6).
Empirical g.f.: 4*x*(41 - 270*x + 600*x^2 - 580*x^3 + 244*x^4 - 36*x^5) / ((1 - x)*(1 - 16*x + 65*x^2 - 92*x^3 + 48*x^4 - 8*x^5)). - Colin Barker, Jun 11 2018

A205315 Number of (n+1)X6 0..1 arrays with every 2X2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.

Original entry on oeis.org

488, 7784, 126536, 2068148, 33865634, 554916092, 9094954742, 149077423220, 2443638951908, 40055966781734, 656597489663162, 10762963773161732, 176426890096852634, 2891996520924867398, 47405724154180563434
Offset: 1

Views

Author

R. H. Hardin Jan 25 2012

Keywords

Comments

Column 5 of A205318

Examples

			Some solutions for n=4
..0..1..1..1..0..1....0..1..1..1..1..1....0..1..0..0..1..0....0..0..0..1..0..0
..1..1..0..1..0..1....1..1..0..1..0..1....1..1..0..1..1..1....1..0..1..1..1..1
..1..0..0..0..0..1....0..1..1..1..1..1....0..1..1..1..0..1....1..1..1..0..0..1
..0..0..1..0..1..1....1..1..0..0..1..0....0..1..0..0..0..1....0..1..0..0..1..1
..1..0..1..1..1..0....0..0..0..1..1..0....0..1..1..1..1..1....1..1..0..1..1..0
		

Formula

Empirical: a(n) = 31*a(n-1) -321*a(n-2) +1569*a(n-3) -4179*a(n-4) +6420*a(n-5) -5671*a(n-6) +2668*a(n-7) -516*a(n-8)

A205316 Number of (n+1)X7 0..1 arrays with every 2X2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.

Original entry on oeis.org

1460, 35500, 882182, 22091516, 554916092, 13956665238, 351210375464, 8839958693704, 222522561716050, 5601638723985320, 141014378310113564, 3549888849256712462, 89364987835152404176, 2249679176828409331216
Offset: 1

Views

Author

R. H. Hardin Jan 25 2012

Keywords

Comments

Column 6 of A205318

Examples

			Some solutions for n=4
..0..0..0..1..0..0..0....0..0..1..0..0..0..1....0..0..1..1..1..0..1
..1..1..1..1..0..1..0....0..1..1..0..1..0..1....0..1..1..0..0..0..1
..1..0..1..0..0..1..0....1..1..0..0..1..1..1....1..1..0..0..1..1..1
..1..1..1..0..1..1..1....1..0..0..1..1..0..0....1..0..0..1..1..0..0
..0..1..0..0..1..0..0....0..0..1..1..0..0..1....0..0..1..1..0..0..1
		

Formula

Empirical: a(n) = 56*a(n-1) -1164*a(n-2) +12439*a(n-3) -78536*a(n-4) +314610*a(n-5) -829844*a(n-6) +1464316*a(n-7) -1728640*a(n-8) +1345964*a(n-9) -671600*a(n-10) +205552*a(n-11) -36416*a(n-12) +3392*a(n-13) -128*a(n-14)

A205317 Number of (n+1)X8 0..1 arrays with every 2X2 subblock having the same number of equal edges, and new values 0..1 introduced in row major order.

Original entry on oeis.org

4376, 161928, 6150512, 235994088, 9094954742, 351210375464, 13574876544398, 524918733085720, 20301876944832818, 785274659708798830, 30375704525543067782, 1175006427763697066728, 45452565752953792429196
Offset: 1

Views

Author

R. H. Hardin Jan 25 2012

Keywords

Comments

Column 7 of A205318

Examples

			Some solutions for n=4
..0..0..0..0..1..1..0..0....0..0..1..0..1..1..1..1....0..1..0..1..1..1..0..0
..1..0..1..0..1..0..0..1....0..1..1..1..1..0..1..0....1..1..1..1..0..0..0..1
..1..0..0..0..1..0..1..1....1..1..0..0..0..0..1..1....1..0..0..0..0..1..0..0
..0..0..1..1..1..0..0..0....0..0..0..1..0..1..1..0....0..0..1..0..1..1..0..1
..0..1..1..0..0..0..1..0....0..1..1..1..0..0..1..0....1..0..1..1..1..0..0..1
		

Formula

Empirical: a(n) = 106*a(n-1) -4578*a(n-2) +110127*a(n-3) -1685691*a(n-4) +17662632*a(n-5) -132490685*a(n-6) +732439565*a(n-7) -3041749572*a(n-8) +9607185471*a(n-9) -23244897123*a(n-10) +43214022033*a(n-11) -61676422325*a(n-12) +67255934696*a(n-13) -55515488409*a(n-14) +34166147646*a(n-15) -15313024644*a(n-16) +4816467696*a(n-17) -999456992*a(n-18) +121777664*a(n-19) -6527616*a(n-20)
Showing 1-7 of 7 results.