A205325 Decimal expansion of the limit of [0;1,1,...] + [0;2,2,...] + ... + [0;n,n,...] - log(n) as n approaches infinity.
0, 4, 1, 6, 6, 6, 2, 6, 2, 7, 6, 3, 4, 8, 4, 8, 1, 0, 8, 7, 0, 1, 1, 6, 3, 5, 8, 5, 6, 9, 2, 3, 2, 0, 7, 4, 3, 1, 2, 5, 4, 5, 4, 6, 7, 5, 2, 8, 4, 1, 6, 3, 1, 8, 0, 9, 2, 0, 1, 3, 5, 9, 2, 3, 2, 9, 9, 1, 6, 4, 5, 7, 7, 5, 1, 2, 6, 2, 5, 5, 3, 7, 8, 3, 9, 5, 0, 3
Offset: 0
Examples
0.0416662....
Links
- Martin Janecke, Edle Reihe
Programs
-
Mathematica
digits = 10; dn = 1000000; Clear[f]; f[n_] := NSum[2/(k + Sqrt[k^2+4]) - 1/k, {k, 1, Infinity}, NSumTerms -> 200000, WorkingPrecision -> digits+10, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 20}}] + EulerGamma // RealDigits[#, 10, digits+2]& // First; f[dn]; f[n = 2*dn]; While[f[n] != f[n-dn], n = n+dn]; Prepend[ f[n][[1 ;; digits]], 0] (* Jean-François Alcover, Feb 25 2013 *)
Formula
lim_{n->infinity} (1/[1;1,...] + 1/[2;2,...] + 1/[3;3,...] + ... + 1/[n;n,...] - log(n)).
lim_{n->infinity} (sum_{k=1...n} (2/(k + sqrt(k^2 + 4))) - log(n)).
Extensions
More terms from Jean-François Alcover, Feb 25 2013
More terms from Jon E. Schoenfield, Jan 05 2014