A205408 Number of (n+2) X 3 0..2 arrays with every 3 X 3 subblock having three equal elements in a row horizontally, vertically or nw-to-se diagonally exactly two ways, and new values 0..2 introduced in row major order.
468, 3868, 33322, 236576, 1820215, 14452683, 109757792, 844627201, 6555663807, 50395116296, 388310279461, 2998496455277, 23106198583152, 178125506630869, 1373888878002903, 10592170949339668, 81666691848271821, 629737361145882421
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..0....0..0..1....0..0..1....0..0..0....0..0..0....0..1..2 ..1..1..2....0..1..2....2..0..1....1..1..1....0..0..0....1..0..2....0..2..2 ..0..0..0....0..1..2....1..0..0....0..1..1....1..1..2....0..1..0....0..1..2 ..2..2..2....0..2..2....0..0..0....0..0..0....2..2..2....1..1..1....0..1..2 ..1..2..1....0..2..2....2..1..0....0..2..2....2..0..2....0..0..0....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A205415.
Formula
Empirical: a(n) = 3*a(n-1) +15*a(n-2) +210*a(n-3) -46*a(n-4) -1180*a(n-5) -8860*a(n-6) -9460*a(n-7) +35477*a(n-8) +165003*a(n-9) +271917*a(n-10) -292806*a(n-11) -1718502*a(n-12) -2698834*a(n-13) -1465296*a(n-14) +4872048*a(n-15) +13801984*a(n-16) +30802224*a(n-17) +54371712*a(n-18) +14213752*a(n-19) -115878688*a(n-20) -314261840*a(n-21) -579542448*a(n-22) -599435264*a(n-23) +450034176*a(n-24) +2993109568*a(n-25) +6140523968*a(n-26) +5188675584*a(n-27) -5040264704*a(n-28) -21090059008*a(n-29) -30058399232*a(n-30) -12075326464*a(n-31) +39301468160*a(n-32) +79235510272*a(n-33) +29768392704*a(n-34) -75591352320*a(n-35) -84606517248*a(n-36) +10132783104*a(n-37) +59464876032*a(n-38) +26931363840*a(n-39).
Comments