This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205457 #11 Nov 15 2020 12:59:26 %S A205457 1,1,1,1,1,1,1,6,6,1,1,15,1,15,1,1,28,15,15,28,1,1,45,70,1,70,45,1,1, %T A205457 66,210,28,28,210,66,1,1,91,495,210,1,210,495,91,1,1,120,1001,924,45, %U A205457 45,924,1001,120,1,1,153,1820,3003,495,1,495,3003,1820,153,1,1 %N A205457 Symmetric matrix, by antidiagonals: C(max(2i,2j),min(2i,2j)), i>=0, j>=0. %F A205457 G.f.: (S(x,y)+S(y,x))/(x*y)-x*y/(1-x*y)+1/(1-x)+1/(1-y)-1, where S(x,y)=((x^3-3*x^2)*y^3-x^2*y^2)/((x^2-2*x+1)*y^3+(-x^2-3)*y^2+(2*x+3)*y-1). - _Vladimir Kruchinin_, Oct 29 2020 %e A205457 Northwest corner: %e A205457 1....6....15...28...45 %e A205457 6....1....15...70...210 %e A205457 15...15...1....28...210 %e A205457 28...70...28...1....45 %e A205457 45...210..210..45...1 %t A205457 f[i_, j_] := Binomial[Max[2 i - 2, 2 j - 2], Min[2 i - 2, 2 j - 2]] %t A205457 TableForm[Table[f[i, j], {i, 1, 10}, {j, 1, 10}]] %t A205457 Flatten[Table[f[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]] %o A205457 (Maxima) %o A205457 S(x,y):=((x^3-3*x^2)*y^3-x^2*y^2)/((x^2-2*x+1)*y^3+(-x^2-3)*y^2+(2*x+3)*y-1); %o A205457 taylor((S(x,y)+S(y,x))/(x*y)-x*y/(1-x*y)+1/(1-x)+1/(1-y)-1,x,0,7,y,0,7); /* _Vladimir Kruchinin_, Oct 29 2020 */ %Y A205457 Cf. A182878, A205456. %K A205457 nonn,tabl %O A205457 1,8 %A A205457 _Clark Kimberling_, Jan 28 2012