A205468 Number of (n+1) X 2 0..2 arrays with every 2 X 2 subblock having the same number of equal edges, and new values 0..2 introduced in row major order.
14, 48, 175, 677, 2709, 11143, 46709, 198483, 851317, 3674723, 15929949, 69254347, 301652741, 1315582371, 5742416845, 25079258843, 109571246421, 478835560339, 2092898539805, 9148671997707, 39994487184037, 174849254952131
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..0....0..0....0..1....0..0....0..0....0..0....0..0....0..1....0..0 ..0..1....0..1....0..1....1..1....1..0....0..0....1..2....1..2....0..2....1..2 ..0..1....0..0....1..1....2..1....1..1....0..0....1..0....0..2....1..2....0..2 ..1..1....1..0....0..0....1..1....2..2....0..0....2..2....0..1....0..0....0..1 ..1..2....1..0....1..0....1..2....2..1....0..0....0..1....0..2....2..1....2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A205475.
Formula
Empirical: a(n) = 9*a(n-1) - 21*a(n-2) - 11*a(n-3) + 66*a(n-4) - 6*a(n-5) - 36*a(n-6).
Empirical g.f.: x*(14 - 78*x + 37*x^2 + 264*x^3 - 105*x^4 - 180*x^5) / ((1 - x)*(1 - 3*x)*(1 - 2*x - 2*x^2)*(1 - 3*x - 6*x^2)). - Colin Barker, Mar 04 2018
Comments