cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205495 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.

Original entry on oeis.org

1, 46, 937, 12331, 123216, 1019051, 7349140, 47816612, 287357460, 1622135139, 8709442871, 44899559053, 223883501478, 1086005140508, 5148332487873, 23940669359515, 109535136537197, 494307574790201, 2204762394907238, 9736270202183689, 42629974672006973
Offset: 0

Views

Author

L. Edson Jeffery, Jan 28 2012

Keywords

Comments

The denominator of the generating function for this sequence is a polynomial of degree 56. Terms corresponding to n=0,...,20 are shown above, with those for n=21,...,60 as follows: {185291835954412064, 800317930217099771, 3438057983187970745, 14700487950597800766, 62602970565114993286, 265668524077091893747, 1124012759249695584332, 4743119424920236606646, 19969635838069446154607, 83911303727287364502524, 351988383031210413076295, 1474320303050934448138586, 6167313972271997160616487, 25770018446823167711177256, 107575128852482376189099657, 448686576996876913475900985, 1870064613139417627428681546, 7789228056784680467763728356, 32425967246106296890368810943, 134922331498272588364476180150, 561170234171421424687450762218, 2333185213162875626980569334586, 9697691681023767935816546925810, 40296761019115897693378020750304, 167405678599573178754554735425500, 695315826495982432201817860350384, 2887471697263577884599209836720724, 11989119731801937435908186367502418, 49773672878387017240820277186133933, 206615368239595050328432096365772786, 857596063782668973911429246019645248, 3559311146445642266628947699835442405, 14771247245703845390492597474797181501, 61297218039066894581942073485999795498, 254355134654745436101804689307395799176, 1055406241452059982356995468881303135245, 4379061349078358899285795579448995148357, 18168834136106060681393826933553149199771, 75380646388163385087709907289615387511431, 312738422596514964765543905180978445030357}.

Crossrefs

Formula

G.f.: F(x) = (1 + 12*x - 112*x^2 - 343*x^3 + 3560*x^4 + 765*x^5 - 40847*x^6 + 10585*x^7 + 310877*x^8 - 193248*x^9 - 1419395*x^10 + 785781*x^11 + 5312667*x^12 - 2323912*x^13 - 15628824*x^14 + 5966469*x^15 + 33782788*x^16 - 10059915*x^17 - 55526776*x^18 + 8186536*x^19 + 73510769*x^20 + 2472617*x^21 - 80001340*x^22 - 15202136*x^23 + 70051834*x^24 + 21752017*x^25 - 47710282*x^26 - 20490103*x^27 + 24620158*x^28 + 14731526*x^29 - 9477868*x^30 - 8317984*x^31 + 2706852*x^32 + 3624852*x^33 - 575397*x^34 - 1176133*x^35 + 88180*x^36 + 269838*x^37 - 5571*x^38 - 39836*x^39 - 2463*x^40 + 2831*x^41 + 1104*x^42 + 107*x^43 - 221*x^44 - 36*x^45 + 23*x^46 + 2*x^47 - x^48) / ((1-x)^6 * (1-x-x^2)^5 * (1-2*x-x^2+x^3)^4 * (1-2*x-3*x^2+x^3+x^4)^3 * (1-3*x-3*x^2+4*x^3+x^4-x^5)^2 * (1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)).
CONJECTURE 1. a(n) = M_{n,5} = M_{5,n}, where M = A205497.
CONJECTURE 2. Let w=2*cos(Pi/13). Then lim_{n->oo} a(n+1)/a(n) = w^5-4*w^3+3*w = spectral radius of the 6 X 6 unit-primitive matrix (see [Jeffery]) A_{13,5} = [0,0,0,0,0,1; 0,0,0,0,1,1; 0,0,0,1,1,1; 0,0,1,1,1,1; 0,1,1,1,1,1; 1,1,1,1,1,1].