cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205496 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.

This page as a plain text file.
%I A205496 #15 Oct 24 2024 23:52:17
%S A205496 1,79,2475,47191,656683,7349140,70148989,593513485,4571277561,
%T A205496 32672880245,219830952888,1407595988962,8650512982826,51368774778763,
%U A205496 296342413123845,1668132449230997,9195464663247238,49787415018534288,265430586786327769
%N A205496 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.
%C A205496 See array A205497 regarding association of this sequence with generating functions for the rows of the array form of A050446.
%H A205496 L. E. Jeffery, <a href="/wiki/User:L._Edson_Jeffery/Unit-Primitive_Matrices">Unit-primitive matrices</a>
%F A205496 G.f.: F(x) = (1 + 29*x - 330*x^2 - 1870*x^3 + 28792*x^4 - 28880*x^5 - 658872*x^6 + 1808035*x^7 + 7251417*x^8 - 30049286*x^9 - 53844318*x^10 + 331611771*x^11 + 172019006*x^12 - 2314667923*x^13 - 44340353*x^14 + 12301024850*x^15 - 283356562*x^16 - 53520778564*x^17 + 21918429228*x^18 + 188280737400*x^19 - 99256863420*x^20 - 537933519143*x^21 + 304479953092*x^22 + 1292735746371*x^23 - 685767992532*x^24 - 2703731985407*x^25 + 1220124121648*x^26 + 4969059486596*x^27 - 1817137951816*x^28 - 7940770334300*x^29 + 2310666239334*x^30 + 10897173663437*x^31 - 242841325861*x^32 - 12794627581139*x^33 + 1919519246791*x^34 + 12918502357203*x^35 - 852890650171*x^36 -11317650709986*x^37 - 313858871781*x^38 + 8665013739391*x^39 + 1068808054156*x^40 - 5804674396693*x^41 - 1231795216164*x^42 + 3382179875958*x^43 + 984955686298*x^44 - 1694171598050*x^45 - 619939090864*x^46 + 718589694092*x^47 + 323730198889*x^48 - 253619875999*x^49 - 144187648137*x^50 + 72968474423*x^51 + 55421646471*x^52 - 16658211415*x^53 - 18346712946*x^54 + 2894246774*x^55 + 5160729532*x^56 - 351795527*x^57 - 1206372119*x^58 + 22006791*x^59 + 227332930*x^60 + 1758161*x^61 - 33060926*x^62 - 881244*x^63 + 3436739*x^64 + 218431*x^65 - 208580*x^66 - 43625*x^67 - 299*x^68 + 6491*x^69 + 1284*x^70 - 646*x^71 - 104*x^72 + 38*x^73 +3*x^74 -x^75) / ((1-x)^7 * (1-x-x^2)^6 * (1-2*x-x^2+x^3)^5 * (1-2*x-3*x^2+x^3+x^4)^4 * (1-3*x-3*x^2+4*x^3+x^4-x^5)^3 * (1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)^2 * (1-4*x-6*x^2+10*x^3+5*x^4-6*x^5-x^6+x^7)).
%F A205496 CONJECTURE 1. a(n) = M_{n,6} = M_{6,n}, where M = A205497.
%F A205496 CONJECTURE 2. Let w=2*cos(Pi/15). Then lim_{n->oo} a(n+1)/a(n) = w^6-5*w^4+6*w^2-1 = spectral radius of the 7 X 7 unit-primitive matrix (see [Jeffery]) A_{15,6} = [0,0,0,0,0,0,1; 0,0,0,0,0,1,1; 0,0,0,0,1,1,1; 0,0,0,1,1,1,1; 0,0,1,1,1,1,1; 0,1,1,1,1,1,1; 1,1,1,1,1,1,1].
%Y A205496 Cf. A205497, A050446, A050447.
%K A205496 nonn
%O A205496 0,2
%A A205496 _L. Edson Jeffery_, Jan 30 2012