This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205508 #5 Mar 30 2012 18:37:34 %S A205508 1,4,8,0,48,232,0,0,1632,3940,19024,0,0,267688,0,0,1883328,9093512, %T A205508 10976840,0,127955424,0,0,0,0,15740857452,25334527696,0,0, %U A205508 356483857192,0,0,2508054264192,0,29236023007504,0,85200014758320,411382062287848,0,0,5788584895037376 %N A205508 a(n) = Pell(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares. %C A205508 Compare to the g.f. of A004018 given by the Lambert series identity: %C A205508 1 + 4*Sum_{n>=0} (-1)^n*x^(2*n+1)/(1 - x^(2*n+1)) = (1 + 2*Sum_{n>=1} x^(n^2))^2. %F A205508 G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Pell(2*n+1)*x^(2*n+1) / (1 - A002203(2*n+1)*x^(2*n+1) - x^(4*n+2)), where A002203 is the companion Pell numbers. %e A205508 G.f.: A(x) = 1 + 4*x + 8*x^2 + 48*x^4 + 232*x^5 + 1632*x^8 + 3940*x^9 + 19024*x^10 +... %e A205508 Compare the g.f to the square of the Jacobi theta_3 series: %e A205508 theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +... %e A205508 The g.f. equals the sum: %e A205508 A(x) = 1 + 4*x/(1-2*x-x^2) - 4*5*x^3/(1-14*x^3-x^6) + 4*29*x^5/(1-82*x^5-x^10) - 4*169*x^7/(1-478*x^7-x^14) + 4*985*x^9/(1-2786*x^9-x^18) - 4*5741*x^11/(1-16238*x^11-x^22) + 4*33461*x^13/(1-94642*x^13-x^26) - 4*195025*x^15/(1-551614*x^15-x^30) +... %e A205508 which involves odd-indexed Pell and companion Pell numbers. %o A205508 (PARI) {A004018(n)=polcoeff((1+2*sum(k=1, sqrtint(n+1), x^(k^2), x*O(x^n)))^2, n)} %o A205508 {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)} %o A205508 {a(n)=if(n==0,1,Pell(n)*A004018(n))} %o A205508 (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)} %o A205508 {A002203(n)=Pell(n-1)+Pell(n+1)} %o A205508 {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*Pell(2*m+1)*x^(2*m+1)/(1-A002203(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n))))^(1/1),n)} %Y A205508 Cf. A205507, A204384, A204270, A004018, A000129 (Pell), A002203. %K A205508 nonn %O A205508 0,2 %A A205508 _Paul D. Hanna_, Jan 28 2012