A205535 Least nonnegative integer y such that Kronecker(y^2 - 4, n) == -1 and (x+2)^(n+1) == 5 -+ 2*y (mod n, mod x^2 +- y*x + 1), or -1 if there is no such y.
-1, -1, 1, 0, -1, 1, -1, 0, -1, -1, -1, 0, -1, 3, -1, -1, -1, 1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 1, -1, 0, -1, -1, -1, -1, -1, 3, -1, -1, -1, 1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 0, -1, 5, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, 3, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1
Offset: 0
Keywords
Links
- P. Underwood, 4.X Selfridge Conjecture (on "Prime Pages" profile), Jan 2012.
Programs
-
PARI
A205535(n)={/*isprime(n) &&*/for(y=0,n, kronecker(y^2-4,n)==-1 || next; Mod(x+Mod(2,n),x^2-y*x+1)^(n+1)==5+2*y || next; Mod(x+Mod(2,n),x^2+y*x+1)^(n+1)==5-2*y && return(y));-1} /* the upper search bound is motivated from experimental data, which suggests that y << n, cf. A205534. If we admit the conjecture, we can prefix the for() loop with "isprime(n) &&". */
Comments