A205551 The least j such that n divides k^k-j^j, where k (as in A205546) is the least number for which there is such a j.
1, 1, 1, 2, 1, 2, 2, 4, 2, 4, 1, 2, 1, 2, 1, 4, 1, 2, 4, 4, 2, 1, 2, 4, 4, 1, 3, 2, 4, 4, 1, 4, 3, 4, 1, 2, 4, 1, 1, 4, 5, 2, 1, 1, 1, 2, 4, 4, 6, 4, 1, 1, 7, 3, 6, 6, 7, 4, 5, 4, 5, 2, 2, 4, 1, 3, 6, 4, 2, 6, 1, 8, 3, 1, 6, 1, 6, 3, 8, 4, 6, 5, 12, 2, 1, 4, 1, 6, 2, 6, 1, 2, 9, 4, 5, 4, 6, 6, 3
Offset: 1
Keywords
Examples
1 divides 2^2-1^1 -> k=2, j=1 2 divides 3^3-1^1 -> k=3, j=1 3 divides 2^2-1^1 -> k=2, j=1 4 divides 4^4-2^2 -> k=2, j=2
Crossrefs
Cf. A204892.
Programs
-
Mathematica
s = Table[n^n, {n, 1, 120}]; lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}] Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] (* Peter J. C. Moses, Jan 27 2012 *)
Comments