cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205554 Least positive integer k such that n divides k^(k-1)-j^(j-1) for some j in [1,k-1].

This page as a plain text file.
%I A205554 #7 Dec 04 2016 19:46:26
%S A205554 2,3,4,3,4,5,3,3,4,7,4,5,5,5,7,5,5,7,7,7,4,5,6,5,6,5,7,5,12,8,4,6,5,7,
%T A205554 11,7,9,7,5,7,8,13,7,5,7,6,12,5,8,8,5,5,7,12,4,5,7,12,12,11,12,4,4,8,
%U A205554 7,8,7,7,7,11,7,7,9,9,8,7,5,5,8,9,9,8,10,13,7,7,14,5,5,13,16,7
%N A205554 Least positive integer k such that n divides k^(k-1)-j^(j-1) for some j in [1,k-1].
%C A205554 For a guide to related sequences, see A204892.
%e A205554 1 divides 2^(2-1)-1^(1-1) -> k=2, j=1
%e A205554 2 divides 3^(3-1)-1^(1-1) -> k=3, j=1
%e A205554 3 divides 4^(4-1)-1^(1-1) -> k=4, j=1
%e A205554 4 divides 3^(3-1)-1^(1-1) -> k=3, j=1
%e A205554 5 divides 4^(4-1)-3^(3-1) -> k=4, j=3
%t A205554 s = Table[n^(n-1), {n, 1, 120}];
%t A205554 lk = Table[NestWhile[# + 1 &, 1,
%t A205554    Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
%t A205554 Table[NestWhile[# + 1 &, 1,
%t A205554   Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &],
%t A205554 {j, 1, Length[lk]}]
%t A205554 (* _Peter J. C. Moses_, Jan 27 2012 *)
%Y A205554 Cf. A204892, A205546, A000169.
%K A205554 nonn
%O A205554 1,1
%A A205554 _Clark Kimberling_, Feb 01 2012