This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205555 #6 Dec 04 2016 19:46:26 %S A205555 1,1,1,1,3,1,2,1,1,3,3,1,1,3,4,1,4,1,1,3,1,3,2,1,1,1,4,3,8,2,2,4,4,3, %T A205555 9,1,5,1,1,3,2,1,1,3,4,2,2,1,1,2,4,1,5,6,3,3,1,8,7,1,5,2,1,4,4,2,4,3, %U A205555 5,9,2,1,8,5,2,1,3,1,7,1,6,2,4,1,3,1,2,3,2,1,1,5,2,2,5,5,4,1,7 %N A205555 Least positive integer j such that n divides k^(k-1)-j^(j-1), where k (as in A205554) is the least positive integer for which there is such a j. %C A205555 For a guide to related sequences, see A204892. %e A205555 1 divides 2^(2-1)-1^(1-1) -> k=2, j=1 %e A205555 2 divides 3^(3-1)-1^(1-1) -> k=3, j=1 %e A205555 3 divides 4^(4-1)-1^(1-1) -> k=4, j=1 %e A205555 4 divides 3^(3-1)-1^(1-1) -> k=3, j=1 %e A205555 5 divides 4^(4-1)-3^(3-1) -> k=4, j=3 %t A205555 s = Table[n^(n-1), {n, 1, 120}]; %t A205555 lk = Table[NestWhile[# + 1 &, 1, %t A205555 Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}] %t A205555 Table[NestWhile[# + 1 &, 1, %t A205555 Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], %t A205555 {j, 1, Length[lk]}] %t A205555 (* _Peter J. C. Moses_, Jan 27 2012 *) %Y A205555 Cf. A204892, A205551. %K A205555 nonn %O A205555 1,5 %A A205555 _Clark Kimberling_, Feb 01 2012